589 research outputs found
Laboratory testing of steel fibre reinforced shotcrete
Uniaxial and triaxial compression tests on steel fibre reinforced shotcrete (SFRS) have been used to quantify the elastic-plastic response behaviour for both the peak and post-peak regions. The laboratory tests were conducted with a servo-controlled testing machine to obtain complete stress-strain curves. The test results include unconfined and triaxial compressive strengths, shear strengths and tensile strengths together with the elastic and plastic mechanical properties of SFRS. A method is also suggested for obtaining the plasticity parameters for non-linear modelling of SFRS
Tensile Strength of Geological Discontinuities Including Incipient Bedding, Rock Joints and Mineral Veins
Geological discontinuities have a controlling influence for many rock-engineering projects in terms of strength, deformability and permeability, but their characterisation is often very difficult. Whilst discontinuities are often modelled as lacking any strength, in many rock masses visible rock discontinuities are only incipient and have tensile strength that may approach and can even exceed that of the parent rock. This fact is of high importance for realistic rock mass characterisation but is generally ignored. It is argued that current ISRM and other standards for rock mass characterisation, as well as rock mass classification schemes such as RMR and Q, do not allow adequately for the incipient nature of many rock fractures or their geological variability and need to be revised, at least conceptually. This paper addresses the issue of the tensile strength of incipient discontinuities in rock and presents results from a laboratory test programme to quantify this parameter. Rock samples containing visible, natural incipient discontinuities including joints, bedding, and mineral veins have been tested in direct tension. It has been confirmed that such discontinuities can have high tensile strength, approaching that of the parent rock. Others are, of course, far weaker. The tested geological discontinuities all exhibited brittle failure at axial strain less than 0.5 % under direct tension conditions. Three factors contributing to the tensile strength of incipient rock discontinuities have been investigated and characterised. A distinction is made between sections of discontinuity that are only partially developed, sections of discontinuity that have been locally weathered leaving localised residual rock bridges and sections that have been ‘healed’ through secondary cementation. Tests on bedding surfaces within sandstone showed that tensile strength of adjacent incipient bedding can vary considerably. In this particular series of tests, values of tensile strength for bedding planes ranged from 32 to 88 % of the parent rock strength (intact without visible discontinuities), and this variability could be attributed to geological factors. Tests on incipient mineral veins also showed considerable scatter, the strength depending upon the geological nature of vein development as well as the presence of rock bridges. As might be anticipated, tensile strength of incipient rock joints decreases with degree of weathering as expressed in colour changes adjacent to rock bridges. Tensile strengths of rock bridges (lacking marked discolouration) were found to be similar to that of the parent rock. It is concluded that the degree of incipiency of rock discontinuities needs to be differentiated in the process of rock mass classification and engineering design and that this can best be done with reference to the tensile strength relative to that of the parent rock. It is argued that the science of rock mass characterisation may be advanced through better appreciation of geological history at a site thereby improving the process of prediction and extrapolating properties
Prediction of strength and deformability of an interlocked blocky rock mass using UDEC
The accurate prediction of strength and deformability characteristics of a rock mass is very challenging. In practice, properties of a rock mass are often estimated from available empirical relationships based on the uniaxial compressive strength (UCS). However, UCS does not always give a good indication of in-situ rock mass strength and deformability. The aim of this paper is to present a methodology to predict the strength and deformability of a jointed rock mass using UDEC (universal distinct element code). In the study, the rock mass is modelled as an assemblage of deformable blocks that can yield as an intact material and/or slide along pre-defined joints within the rock mass. A range of numerical simulations of UCS and triaxial tests were conducted on rock mass samples in order to predict the equivalent mechanical properties for the rock mass under different loading directions. Results are compared against the deformability parameters obtained by analytical methods
Chalk-steel Interface testing for marine energy foundations
The Energy Technology Partnership (ETP) and Lloyd’s Register EMEA are gratefully acknowledged for the funding of this project. The authors would also like to acknowledge the support of the European Regional Development Fund (ERDF) SMART Centre at the University of Dundee that allowed purchase of the equipment used during this study. The views expressed are those of the authors alone, and do not necessarily represent the views of their respective companies or employing organizations.Peer reviewedPostprin
Downwearing rates on shore platforms of different calcareous lithotypes
Vertical lowering (downwearing) of shore platform surfaces is a very important mechanism in their morphological evolution albeit much remains incompletely understood. The efficacy of mechanical and chemical weathering acting on a given substrate, together with erosional processes, influences downwearing rates. In order to determine the relationship between lithotypes and downwearing rates, data collected from a Transverse Micro-erosion Meter were obtained for shore platforms of three different calcareous lithotypes
(biocalcarenite, calcarenite and carbonated siltstone) along the central Algarve coast (Southern Portugal).
Downwearing rates ranged between 0.096 mm year−1 and 1.676 mm year−1 in biocalcarenite and weakly cemented calcarenite, respectively. In addition, physical properties of the rocks comprising the platforms were measured, including uniaxial compressive strength (as determined by the Point Load Test), porosity, and calcium carbonate content. The results show that downwearing depends primarily on the intrinsic properties of the substrate. Porosity, in particular, acts in two ways: (i) it tends to weaken the substrate; and, (ii) it controls the downward extent of the water percolation and therefore the depth of the weathering mantle subject to erosion by waves and currents.Portuguese Foundation for Science and Technology (FCT) through Research Projects PTDC/CTEGEX/70448/2006 (BISHOP) and PTDC/CTE-GIX/111230/2009 (EROS)
Engaging Indigenous Community Towards a Talaandig Language Learning and Cultural Sustainability
The decreased use of indigenous language among the young generation of an indigenous community in the Southern Philippines has introduced apprehension among cultural practitioners, the chief administrator, and the community of elders. With the articulated need to strengthen language learning and sustain the culture among the young Talaandig members of the tribe, the chief administrator has proposed a community engagement process for addressing this concern. This study explores the Talaandig language learning and cultural sustainability through the active involvement of an indigenous community of parents–teachers, leaders, and culture practitioners of the Talaandig tribe in Bukidnon, Philippines. Indigenous research methods and ethnographic approaches have resulted in an orthography of sight words and decodable texts culled from community group discussions, which serve as sources of reading materials for early readers of the School of Living Traditions. The findings illustrate the following points for the sustainability of language and culture: (a) the orthography drawn from decodable texts and sounds advances reading comprehension and interest; (b) indigenous knowledge derived through community engagement promotes the attainment of education for sustainable development; (c) outcomes gained from community-engaged research builds foundations for a sustained community and academe relationship; and (d) community book writing centered on indigenous culture promotes community integrity, education for the environment, and language sustainability. It is hoped that the findings could become a basis for strengthening the Talaandig language learning and cultural sustainability in the future, contributing to the literature on Education for Sustainable Development 2030
Geological engineering problems associated with tunnel construction in karst rockmasses: The case of Gavarres tunnel (Spain)
A representative example of the problems associatedwith the excavation and support of tunnels in karst ground is presented. It is a peculiar case in terms of heterogeneity and spatial distribution of zones of poor geotechnical quality, requiring the need to define, preferably in the study phases, adequate site investigation, suitable design procedures, efficient construction techniques and appropriate ground treatment. The difficulties associatedwith the instability of the karstified ground, and the presence of cavities, wholly or partially filled with soils of low cohesion, are discussed via retrospective analysis. The solutions adopted to solve the problems encountered during the tunnel construction enabled a systematic approach, useful for newconstruction projects in limestone terrains of medium to high karstification.Alija, S.; Torrijo Echarri, FJ.; Quinta Ferreira, M. (2013). Geological engineering problems associated with tunnel construction in karst rockmasses: The case of Gavarres tunnel (Spain). Engineering Geology. 157:103-111. doi:10.1016/j.enggeo.2013.02.010S10311115
Estimation of Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Tests Under Water Vapor Pressure
In order to investigate the influence of water vapor pressure in the surrounding environment on mode I fracture toughness (KIc) of rocks, semi-circular bend (SCB) tests under various water vapor pressures were conducted. Water vapor is one of the most effective agents which promote stress corrosion of rocks. The range of water vapor pressure used was 10−2 to 103 Pa, and two anisotropic rock types, African granodiorite and Korean granite, were used in this work. The measurement of elastic wave velocity and observation of thin sections of these rocks were performed to investigate the microstructures of the rocks. It was found that the distribution of inherent microcracks and grains have a preferred orientation. Two types of specimens in different orientations, namely Type-1 and Type-3, were prepared based on the anisotropy identified by the differences in the elastic wave velocity. KIc of both rock types was dependent on the water vapor pressure in the surrounding environment and decreased with increasing water vapor pressure. It was found that the degree of the dependence is influenced by the orientation and density of inherent microcracks. The experimental results also showed that KIc depended on the material anisotropy. A fracture process was discussed on the basis of the geometry of fractures within fractured specimens visualized by the X-ray computed tomography (CT) method. It was concluded that the dominant factor causing the anisotropy of KIc is the distribution of grains rather than inherent microcracks in these rocks
ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen
The International Society for Rock Mechanics has so far developed two standard methods for the determination of static fracture toughness of rock. They used three different core based specimens and tests were to be performed on a typical laboratory compression or tension load frame. Another method to determine the mode I fracture toughness of rock using semicircular bend specimen is herein presented. The specimen is semicircular in shape and made from typical cores taken from the rock with any relative material directions noted. The specimens are tested in three-point bending using a laboratory compression test instrument. The failure load along with its dimensions is used to determine the fracture toughness. Most sedimentary rocks which are layered in structure may exhibit fracture properties that depend on the orientation and therefore measurements in more than one material direction may be necessary. The fracture toughness measurements are expected to yield a size-independent material property if certain minimum specimen size requirements are satisfied
Shear behaviour of rock joints with unsaturated infill
Behaviour of soil-infilled rock joints has significant importance with respect to the strength of fractured rock mass. The presence of even a small amount of fine-grained infill material within a joint can reduce its shear strength considerably, depending on the degree of saturation of infill. Therefore, it is crucial to examine how the infill material can adversely affect the joint shear strength. Previous studies of infilled joints have mainly been focused on idealised regular joint patterns owing to the simplicity and reproducibility in laboratory testing. Current literature on infilled rock joints has also neglected the effect of the degree of saturation of infill on the shear behaviour. In most instances, fully saturated infill has been used or assumed, and the contribution of matric suction on the shear strength of joints having unsaturated infill has not been studied. In this study, a series of triaxial tests on natural joint profiles having joint roughness coefficient (JRC) of 10-12 is carried out at constant moisture content. A semi-empirical model is proposed and validated on the basis of laboratory data
- …
