5 research outputs found

    Optical wireless data transfer through biotissues:practical evidence and initial results

    Get PDF
    Abstract Light has been used in many medical applications to monitor health status and diagnose diseases. Examples include optical sensing through nearinfrared (NIR) spectroscopy, optical coherence tomography, and pulse oximetry. In this article, we propose and demonstrate digital communications through biological tissues using near-infrared light. There are many possible uses to an optical system transmitting information across tissues. In current practices, implants predominantly use radio frequency (RF) radiation for communication. However, molecular biology restricts use of the RF in terms of power, frequency etc., while interference and security issues represent technological challenges in RF communication. In this paper, we demonstrate a novel way of employing NIR light for wireless transmission of data through biological tissues. A phantom mimicking a biological tissue is illuminated with a NIR 810 nm wavelength light-emitting diode (LED), and a light detector with line-of-sight alignment is placed on receiving end. An experimental testbed for Optical Communications through Biotissue (OCBT) was designed and implemented using mostly off-the-shelf components. Measurements for different levels of optical output power and thicknesses were carried out. Transmission rates as high as several tens of kilobits-per-second across several millimeters of tissues were achieved. Hardware limitations in modulating the baseband signal prevented achieving higher data rates. In addition, a high-resolution picture was successfully transmitted through biotissue. The communication system as well as details of the testbed implementations are presented in this paper. Moreover, initial performance measures as well as suggestions for potential use of this optical communication system are also presented and discussed

    Optical percutaneous needle biopsy of the liver: a pilot animal and clinical study

    Get PDF
    This paper presents the results of the experiments which were performed using the optical biopsy system specially developed for in vivo tissue classification during the percutaneous needle biopsy (PNB) of the liver. The proposed system includes an optical probe of small diameter acceptable for use in the PNB of the liver. The results of the feasibility studies and actual tests on laboratory mice with inoculated hepatocellular carcinoma and in clinical conditions on patients with liver tumors are presented and discussed. Monte Carlo simulations were carried out to assess the diagnostic volume and to trace the sensing depth. Fluorescence and diffuse reflectance spectroscopy measurements were used to monitor metabolic and morphological changes in tissues. The tissue oxygen saturation was evaluated using a recently developed approach to neural network fitting of diffuse reflectance spectra. The Support Vector Machine Classification was applied to identify intact liver and tumor tissues. Analysis of the obtained results shows the high sensitivity and specificity of the proposed multimodal method. This approach allows to obtain information before the tissue sample is taken, which makes it possible to significantly reduce the number of false-negative biopsies
    corecore