265 research outputs found

    A study of the Z production cross-section in pp collisions at √s = 7 using tau final states

    Get PDF
    A measurement of the inclusive Z → ττ cross-section in pp collisions at √s =7 is presented based on a dataset of 1.0 fb[superscript −1] collected by the LHCb detector. Candidates for Z → τ τ decays are identified through reconstructed final states with two muons, a muon and an electron, a muon and a hadron, or an electron and a hadron. The production cross-section for Z bosons, with invariant mass between 60 and 120 GeV/c[superscript 2], which decay to τ leptons with transverse momenta greater than 20 GeV/c and pseudorapidities between 2.0 and 4.5, is measured to be σ[subscript pp]→Z→ττ = 71.4 ± 3.5 ± 2.8 ± 2.5 pb; the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the integrated luminosity. The ratio of the cross-sections for Z → τ τ to Z → μμ is determined to be 0.93 ± 0.09, where the uncertainty is the combination of statistical, systematic, and luminosity uncertainties of the two measurements.National Science Foundation (U.S.

    Precision measurement of the B0s-B¯0s oscillation frequency with the decay B0s → D−sπ+

    Get PDF
    A key ingredient to searches for physics beyond the Standard Model in B0s mixing phenomena is the measurement of the B0s– Bs0{{\overline{ {\mathrm {B}}}{}}^0_{\mathrm { s}}} oscillation frequency, which is equivalent to the mass difference Δms of the B0s mass eigenstates. Using the world's largest B0s meson sample accumulated in a dataset, corresponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment at the CERN LHC in 2011, a measurement of Δms is presented. A total of about 34 000 B0s → D−sπ+ signal decays are reconstructed, with an average decay time resolution of 44 fs. The oscillation frequency is measured to be Δms = 17.768 ± 0.023 (stat) ± 0.006 (syst) ps−1, which is the most precise measurement to date

    A community effort to optimize sequence-based deep learning models of gene regulation

    Get PDF
    A systematic evaluation of how model architectures and training strategies impact genomics model performance is needed. To address this gap, we held a DREAM Challenge where competitors trained models on a dataset of millions of random promoter DNA sequences and corresponding expression levels, experimentally determined in yeast. For a robust evaluation of the models, we designed a comprehensive suite of benchmarks encompassing various sequence types. All top-performing models used neural networks but diverged in architectures and training strategies. To dissect how architectural and training choices impact performance, we developed the Prix Fixe framework to divide models into modular building blocks. We tested all possible combinations for the top three models, further improving their performance. The DREAM Challenge models not only achieved state-of-the-art results on our comprehensive yeast dataset but also consistently surpassed existing benchmarks on Drosophila and human genomic datasets, demonstrating the progress that can be driven by gold-standard genomics datasets

    Differential branching fraction and angular analysis of the decay B s0 → φμ + μ -

    Get PDF
    The determination of the differential branching fraction and the first angular analysis of the decay Bs0 → φμ + μ - are presented using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment at √s=7 TeV. The differential branching fraction is determined in bins of q 2, the invariant dimuon mass squared. Integration over the full q 2 range yields a total branching fraction of B (Bs0 → φμ + μ -(7.07 -0.59+0.64± 0.71± 0.71) × 10 -7, where the first uncertainty is statistical, the second systematic, and the third originates from the branching fraction of the normalisation channel. An angular analysis is performed to determine the angular observables F L, S 3, A 6, and A 9. The observables are consistent with Standard Model expectations. [Figure not available: see fulltext.] © 2013 CERN for the benefit of the LHCb collaboration

    Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at √s = 7 TeV

    Get PDF
    The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at √s = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb−1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects

    First Measurement of the Charge Asymmetry in Beauty-Quark Pair Production

    Get PDF
    The difference in the angular distributions between beauty quarks and antiquarks, referred to as the charge asymmetry, is measured for the first time in b (b) over bar pair production at a hadron collider. The data used correspond to an integrated luminosity of 1.0 fb(-1) collected at 7 TeV center-of-mass energy in proton-proton collisions with the LHCb detector. The measurement is performed in three regions of the invariant mass of the b (b) over bar system. The results obtained are A(C)(b (b) over bar) (40 10(5) GeV/c(2)) = 1.6 +/- 1.7 +/- 0.6%,where A(C)(b (b) over bar) is defined as the asymmetry in the difference in rapidity between jets formed from the beauty quark and antiquark, where in each case the first uncertainty is statistical and the second systematic. The beauty jets are required to satisfy 2 20 GeV, and have an opening angle in the transverse plane Delta phi > 2.6 rad. These measurements are consistent with the predictions of the standard model

    Measurement of Charged Particle Multiplicities and Densities in pp Collisions at √s = 7 TeV in the Forward Region

    Get PDF
    Charged particle multiplicities are studied in proton–proton collisions in the forward region at a centre-of-mass energy of √s = 7 TeV with data collected by the LHCb detector. The forward spectrometer allows access to a kinematic range of 2.0 < η < 4.8 in pseudorapidity, momenta greater than 2 GeV/c and transverse momenta greater than 0.2 GeV/c. The measurements are performed using events with at least one charged particle in the kinematic acceptance. The results are presented as functions of pseudorapidity and transverse momentum and are compared to predictions from several Monte Carlo event generators

    First evidence for the two-body charmless baryonic decay B0 → pp̄

    Get PDF
    The results of a search for the rare two-body charmless baryonic decays B0 → pp̄ and B0s → pp̄ are reported. The analysis uses a data sample, corresponding to an integrated luminosity of 0.9 fb-1, of pp collision data collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. An excess of B0 → pp̄ candidates with respect to background expectations is seen with a statistical significance of 3.3 standard deviations. This is the first evidence for a two-body charmless baryonic B0 decay. No significant B0s → pp̄ signal is observed, leading to an improvement of three orders of magnitude over previous bounds. If the excess events are interpreted as signal, the 68.3% confidence level intervals on the branching fractions are (Equation) where the first uncertainty is statistical and the second is systematic

    Observation of B_{c}^{+}→J/ψD_{s}^{+} and B_{c}^{+}→J/ψD_{s}^{*+} decays

    Get PDF
    The decays B+c→J/ψD+s and B+c→J/ψD*+s are observed for the first time using a dataset, corresponding to an integrated luminosity of 3  fb−1, collected by the LHCb experiment in proton-proton collisions at center-of-mass energies of s√=7 and 8 TeV. The statistical significance for both signals is in excess of 9 standard deviations. The following ratios of branching fractions are measured to be B(B+c→J/ψD+s)B(B+c→J/ψπ+)=2.90±0.57±0.24, B(B+c→J/ψD*+s)B(B+c→J/ψD+s)=2.37±0.56±0.10, where the first uncertainties are statistical and the second systematic. The mass of the B+c meson is measured to be mB+c=6276.28±1.44(stat)±0.36(syst)  MeV/c2, using the B+c→J/ψD+s decay mode
    corecore