1,128 research outputs found

    Sequential visibility-graph motifs

    Get PDF
    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated to general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable to distinguish among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series

    Study of RPC gas mixtures for the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment consists of a RPC carpet to be operated at the Yangbajing laboratory (Tibet, P.R. China), 4300 m a.s.l., and devoted to the detection of showers initiated by photon primaries in the energy range 100 GeV - 20 TeV. The measurement technique, namely the timing on the shower front with a few tens of particles, requires RPC operation with 1 ns time resolution, low strip multiplicity, high efficiency and low single counting rate. We have tested RPCs with many gas mixtures, at sea level, in order to optimize these parameters. The results of this study are reported.Comment: 6 pages, 3 figures. To be published in Nucl. Instr. Meth. A, talk given at the "5th International Workshop on RPCs and Related Detectors", Bari (Italy) 199

    Neoadjuvant therapy for breast cancer

    Get PDF
    Objective: To evaluate the frequency of neoadjuvant therapy (NT) in women with stage I–III breast cancer in Italy and whether it is influenced by biological characteristics, screening history, and geographic area. Methods: Data from the High Resolution Study conducted in 7 Italian cancer registries were used; they are a representative sample of incident cancers in the study period (2009–2013). Included were 3546 women aged <85 years (groups <50, 50–69, 70–64, and 75+) with stage I–III breast cancer at diagnosis who underwent surgery. Women were classified as receiving NT if they received chemotherapy, target therapy, and/or hormone therapy before the first surgical treatment. Logistic models were built to test the association with biological and contextual variables. Results: Only 8.2% of women (290 cases) underwent NT; the treatment decreases with increasing age (14.5% in age <50 and 2.2% in age 75+), is more frequent in women with negative receptors (14.8%), HER2-positive (15.7%), and triple-negative (15.6%). The multivariable analysis showed the probability of receiving NT is higher in stage III (odds ratio [OR] 3.83; 95% confidence interval [CI] 2.83–5.18), luminal B (OR 1.87; 95% CI 1.27–2.76), triple-negatives (OR 1.88; 95% CI 1.15–3.08), and in symptomatic cancers (OR 1.98; 95% CI 1.13–3.48). Use of NT varied among geographic areas: Reggio Emilia had the highest rates (OR 2.29; 95% CI 1.37–3.82) while Palermo had the lowest (OR 0.41; 95% CI 0.24–0.68). Conclusions: The use of NT in Italy is limited and variable. There are no signs of greater use in hospitals with more advanced care

    Triadic closure as a basic generating mechanism of communities in complex networks

    Get PDF
    R.K.D. and S.F. gratefully acknowledge MULTIPLEX, Grant No. 317532 of the European Commission

    A general estimator of the primary cosmic ray energy with the ARGO-YBJ experiment

    Get PDF
    The determination of the primary cosmic ray all-particle spectrum with ground-based air shower experiments usually depends on the assumed elemental composition and hadronic interaction model. Here we show that an energy estimator independent of the primary mass composition can be defined by means of shower parameters measured in the core region, as carried out in the ARGO-YBJ experiment. The energy resolution is <10% above 100 TeV and gets better with energy increasing. Being insensitive to the number of muons, this energy determination has only a weak dependence on the hadronic interaction model. The features of this energy estimator have been validated by extensive MC simulations and used in the analysis of the ARGO-YBJ data

    Sequential motif profile of natural visibility graphs

    Get PDF
    6 figures captioned6 figures captione
    corecore