281 research outputs found

    Interpreting current-induced spin polarization in topological insulator surface states

    Full text link
    Several recent experiments on three-dimensional topological insulators claim to observe a large charge current-induced non-equilibrium ensemble spin polarization of electrons in the helical surface state. We present a comprehensive criticism of such claims, using both theory and experiment: First, we clarify the interpretation of quantities extracted from these measurements by deriving standard expressions from a Boltzmann transport equation approach in the relaxation-time approximation at zero and finite temperature to emphasize our assertion that, despite high in-plane spin projection, obtainable current-induced ensemble spin polarization is minuscule. Second, we use a simple experiment to demonstrate that magnetic field-dependent open-circuit voltage hysteresis (identical to those attributed to current-induced spin polarization in topological insulator surface states) can be generated in analogous devices where current is driven through thin films of a topologically-trivial metal. This result *ipso facto* discredits the naive interpretation of previous experiments with TIs, which were used to claim observation of helicity, i.e. spin-momentum locking in the topologically-protected surface state

    Modeling spin transport with current-sensing spin detectors

    Full text link
    By incorporating the proper boundary conditions, we analytically derive the impulse response (or "Green's function") of a current-sensing spin detector. We also compare this result to a Monte-Carlo simulation (which automatically takes the proper boundary condition into account) and an empirical spin transit time distribution obtained from experimental spin precession measurements. In the strong drift-dominated transport regime, this spin current impulse response can be approximated by multiplying the spin density impulse response by the average drift velocity. However, in weak drift fields, large modeling errors up to a factor of 3 in most-probable spin transit time can be incurred unless the full spin current Green's function is used

    Reverse Schottky-Asymmetry Spin Current Detectors

    Full text link
    By reversing the Schottky barrier-height asymmetry in hot-electron semiconductor-metal-semiconductor ballistic spin filtering spin detectors, we have achieved: 1. Demonstration of >50% spin polarization in silicon, resulting from elimination of the ferromagnet/silicon interface on the transport channel detector contact, and 2. Evidence of spin transport at temperatures as high as 260K, enabled by an increase of detector Schottky barrier height.Comment: minor edits, additional ref
    corecore