2,078 research outputs found

    Solid-phase epitaxial regrowth of amorphous layers in Si(100) created by low-energy, high-fluence phosphorus implantation

    No full text
    Medium energy ion scattering has been used to study the kinetics of solid-phaseepitaxial regrowth (SPEG) of ultrathin amorphous layers formed by room-temperature implantation of 5keV energy phosphorus ions into Si (100). The implants create P distributions with peak concentrations up to ∼7×10²¹cm⁻³. SPEG has been driven by rapid thermal annealing, 475°C⩽TA⩽600°C, for times up to 2000s. At each temperature, the regrowth velocity is enhanced in the early stages due to the presence of phosphorus but then slows sharply to a value more than an order of magnitude below the intrinsic rate. The critical phosphorus concentration at the transition point for TA=475°C regrowth is ∼6×10²⁰cm⁻³ and increases steadily with anneal temperature. Time-of-flight secondary ion mass spectroscopy profiles confirm the onset of phosphorus push out, where the advancing recrystallization front enters the transition region. Supplementary cross-sectional transmission electron microscopy evidence confirms the existence of a local strain field.This work has been supported by the Natural Sciences and Engineering Research Council of Canada

    Total Nutrient Element Status of Subsistence Agriculture Soils in Angola

    Get PDF
    Soil nutrient status in subsistence agricultural soils of Angola is poorly understood yet is vital in planning support and development of agricultural systems. This paper establishes the total nutrient status for two contrasting subsistence agricultural areas in Angola, within Huambo and Luanda provinces. Based on the World Reference Base for Soil Resources criteria (IUSS Working Group WRB, 2015, 2022) four soil catenas in each of Huambo and Luanda Provinces are classified as haplic Ferralsols and eutric Cambisols respectively. Mean and range total nutrient element values for twelve elements are determined (N, Ca, K, Mg, Mn, P, S, Zn, Cu, Mo, Fe, Al) with the results showing high variability and indicating that the haplic Ferralsols are below sub-Saharan averages for these elements while the eutric Cambisols are above these averages. Statistical analyses of relationships between soil nutrients and landscape factors by applying ANCOVA and pairwise comparisons using Tukey and Bonferroni tests indicate that underlying parent material has the biggest influence on element concentrations, further modified by slope processes; profile pedogenesis has had minimal contribution to element variances. Our findings highlight the need for detailed local analyses when planning supportive and effective nutrient management interventions

    Paediatric radiology seen from Africa. Part I: providing diagnostic imaging to a young population

    Get PDF
    Article approval pendingPaediatric radiology requires dedicated equipment, specific precautions related to ionising radiation, and specialist knowledge. Developing countries face difficulties in providing adequate imaging services for children. In many African countries, children represent an increasing proportion of the population, and additional challenges follow from extreme living conditions, poverty, lack of parental care, and exposure to tuberculosis, HIV, pneumonia, diarrhoea and violent trauma. Imaging plays a critical role in the treatment of these children, but is expensive and difficult to provide. The World Health Organisation initiatives, of which the World Health Imaging System for Radiography (WHIS-RAD) unit is one result, needs to expand into other areas such as the provision of maintenance servicing. New initiatives by groups such as Rotary and the World Health Imaging Alliance to install WHIS-RAD units in developing countries and provide digital solutions, need support. Paediatric radiologists are needed to offer their services for reporting, consultation and quality assurance for free by way of teleradiology. Societies for paediatric radiology are needed to focus on providing a volunteer teleradiology reporting group, information on child safety for basic imaging, guidelines for investigations specific to the disease spectrum, and solutions for optimising imaging in children

    The thermal emission of the exoplanets WASP-1b and WASP-2b

    Full text link
    We present a comparative study of the thermal emission of the transiting exoplanets WASP-1b and WASP-2b using the Spitzer Space Telescope. The two planets have very similar masses but suffer different levels of irradiation and are predicted to fall either side of a sharp transition between planets with and without hot stratospheres. WASP-1b is one of the most highly irradiated planets studied to date. We measure planet/star contrast ratios in all four of the IRAC bands for both planets (3.6-8.0um), and our results indicate the presence of a strong temperature inversion in the atmosphere of WASP-1b, particularly apparent at 8um, and no inversion in WASP-2b. In both cases the measured eclipse depths favor models in which incident energy is not redistributed efficiently from the day side to the night side of the planet. We fit the Spitzer light curves simultaneously with the best available radial velocity curves and transit photometry in order to provide updated measurements of system parameters. We do not find significant eccentricity in the orbit of either planet, suggesting that the inflated radius of WASP-1b is unlikely to be the result of tidal heating. Finally, by plotting ratios of secondary eclipse depths at 8um and 4.5um against irradiation for all available planets, we find evidence for a sharp transition in the emission spectra of hot Jupiters at an irradiation level of 2 x 10^9 erg/s/cm^2. We suggest this transition may be due to the presence of TiO in the upper atmospheres of the most strongly irradiated hot Jupiters.Comment: 10 pages, submitted to Ap

    The Space Density of Luminous Dusty Star-forming Galaxies at z > 4: SCUBA-2 and LABOCA Imaging of Ultrared Galaxies from Herschel-ATLAS

    Get PDF
    Until recently, only a handful of dusty, star-forming galaxies (DSFGs) were known at z > 4, most of them significantly amplified by gravitational lensing. Here, we have increased the number of such DSFGs substantially, selecting galaxies from the uniquely wide 250, 350, and 500 μm Herschel-ATLAS imaging survey on the basis of their extremely red far-infrared colors and faint 350 and 500 μm flux densities, based on which, they are expected to be largely unlensed, luminous, rare, and very distant. The addition of ground-based continuum photometry at longer wavelengths from the James Clerk Maxwell Telescope and the Atacama Pathfinder Experiment allows us to identify the dust peak in their spectral energy distributions (SEDs), with which we can better constrain their redshifts. We select the SED templates that are best able to determine photometric redshifts using a sample of 69 high-redshift, lensed DSFGs, then perform checks to assess the impact of the CMB on our technique, and to quantify the systematic uncertainty associated with our photometric redshifts, σ = 0.14 (1 + z), using a sample of 25 galaxies with spectroscopic redshifts, each consistent with our color selection. For Herschel-selected ultrared galaxies with typical colors of S 500/S 250 ˜ 2.2 and S 500/S 350 ˜ 1.3 and flux densities, S 500 ˜ 50 mJy, we determine a median redshift, {\hat{z}}{phot}=3.66, an interquartile redshift range, 3.30-4.27, with a median rest-frame 8-1000 μm luminosity, {\hat{L}}{IR}, of 1.3 × 1013 L ⊙. A third of the galaxies lie at z > 4, suggesting a space density, ρ z > 4, of ≈6 × 10-7 Mpc-3. Our sample contains the most luminous known star-forming galaxies, and the most overdense cluster of starbursting proto-ellipticals found to date

    Nutritional correlates of koala persistence in a low-density population

    Get PDF
    It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.IW and WF received a grant from New South Wales (NSW) Department of Environment, Climate Change & Water

    The SCUBA HAlf Degree Extragalactic Survey – III. Identification of radio and mid-infrared counterparts to submillimetre galaxies

    Get PDF
    Determining an accurate position for a submillimetre (submm) galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample – source counts and 2D clustering – to an assessment of their detailed, multiwavelength properties, their contribution to the history of cosmic star formation and their links with present-day galaxy populations. In this paper, we identify robust radio and/or infrared (IR) counterparts, and hence accurate positions, for over two-thirds of the SCUBA HAlf-Degree Extragalactic Survey (SHADES) Source Catalogue, presenting optical, 24-μm and radio images of each SMG. Observed trends in identification rate have given no strong rationale for pruning the sample. Uncertainties in submm position are found to be consistent with theoretical expectations, with no evidence for significant additional sources of error. Employing the submm/radio redshift indicator, via a parametrization appropriate for radio-identified SMGs with spectroscopic redshifts, yields a median redshift of 2.8 for the radio-identified subset of SHADES, somewhat higher than the median spectroscopic redshift. We present a diagnostic colour–colour plot, exploiting Spitzer photometry, in which we identify regions commensurate with SMGs at very high redshift. Finally, we find that significantly more SMGs have multiple robust counterparts than would be expected by chance, indicative of physical associations. These multiple systems are most common amongst the brightest SMGs and are typically separated by 2–6 arcsec, ~15–50/ sin i kpc at z∼ 2, consistent with early bursts seen in merger simulations

    Global warming and recurrent mass bleaching of corals

    Get PDF
    During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs

    Handling missing data when estimating causal effects with targeted maximum likelihood estimation

    Get PDF
    Targeted maximum likelihood estimation (TMLE) is increasingly used for doubly robust causal inference, but how missing data should be handled when using TMLE with data-adaptive approaches is unclear. Based on data (1992-1998) from the Victorian Adolescent Health Cohort Study, we conducted a simulation study to evaluate 8 missing-data methods in this context: complete-case analysis, extended TMLE incorporating an outcome-missingness model, the missing covariate missing indicator method, and 5 multiple imputation (MI) approaches using parametric or machine-learning models. We considered 6 scenarios that varied in terms of exposure/outcome generation models (presence of confounder-confounder interactions) and missingness mechanisms (whether outcome influenced missingness in other variables and presence of interaction/nonlinear terms in missingness models). Complete-case analysis and extended TMLE had small biases when outcome did not influence missingness in other variables. Parametric MI without interactions had large bias when exposure/outcome generation models included interactions. Parametric MI including interactions performed best in bias and variance reduction across all settings, except when missingness models included a nonlinear term. When choosing a method for handling missing data in the context of TMLE, researchers must consider the missingness mechanism and, for MI, compatibility with the analysis method. In many settings, a parametric MI approach that incorporates interactions and nonlinearities is expected to perform well
    corecore