379 research outputs found
Genome-Wide Analysis of the Response of Dickeya dadantii 3937 to Plant Antimicrobial Peptides
Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial pep- tides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts
Systematic review and network meta-analysis on the efficacy of evolocumab and other therapies for the management of lipid levels in hyperlipidemia
Background: The proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors evolocumab and alirocumab substantially reduce low‐density lipoprotein cholesterol (LDL‐C) when added to statin therapy in patients who need additional LDL‐C reduction.
Methods and Results: We conducted a systematic review and network meta‐analysis of randomized trials of lipid‐lowering therapies from database inception through August 2016 (45 058 records retrieved). We found 69 trials of lipid‐lowering therapies that enrolled patients requiring further LDL‐C reduction while on maximally tolerated medium‐ or high‐intensity statin, of which 15 could be relevant for inclusion in LDL‐C reduction networks with evolocumab, alirocumab, ezetimibe, and placebo as treatment arms. PCSK9 inhibitors significantly reduced LDL‐C by 54% to 74% versus placebo and 26% to 46% versus ezetimibe. There were significant treatment differences for evolocumab 140 mg every 2 weeks at the mean of weeks 10 and 12 versus placebo (−74.1%; 95% credible interval −79.81% to −68.58%), alirocumab 75 mg (−20.03%; 95% credible interval −27.32% to −12.96%), and alirocumab 150 mg (−13.63%; 95% credible interval −22.43% to −5.33%) at ≥12 weeks. Treatment differences were similar in direction and magnitude for PCSK9 inhibitor monthly dosing. Adverse events were similar between PCSK9 inhibitors and control. Rates of adverse events were similar between PCSK9 inhibitors versus placebo or ezetimibe.
Conclusions: PCSK9 inhibitors added to medium‐ to high‐intensity statin therapy significantly reduce LDL‐C in patients requiring further LDL‐C reduction. The network meta‐analysis showed a significant treatment difference in LDL‐C reduction for evolocumab versus alirocumab
Recommended from our members
RNA viruses in hymenopteran pollinators : evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species
Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general
Recommended from our members
RNA viruses in hymenopteran pollinators : evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species
Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general
Pedagogy for personal transformation: Faith development in the context of a Scottish Baptist College
This paper explores aspects of the personal transformation of students through theological education, (i) by proposing a theological interpretation based on the perspective of convictional theology; and (ii) by offering insights arising from Transactional Analysis on how students can be moved to a mature phase of life and faith development
Wireless Kick Pedal
The goal of the project is to build a wireless kick pedal that allows accessibility to drummers that have leg or foot disabilities and add versatility to multi-instrumentalists looking to add percussion while playing another instrument. The proposed pedal is designed in two main parts, a wearable band that tracks the player’s movement, and a hammer mechanism that receives actuation commands from the wearable band to move the hammer and deliver a drumbeat. The band is designed to be worn on several parts of the body, including the ankle, knee, thigh, or even the arm depending on the user’s situation. This is to allow compatibility for musicians of differing ability. The team plans to communicate from the band to the hammer mechanism over a short-range wireless communication protocol, so that the response time to deliver a beat is as close to human response time as possible. The hammer mechanism for physically delivering the drumbeat is to be designed such that the hammer strikes the drum similarly to how a commercial pedal would. With this pedal design, the team hopes to invite more people to play the drums and spark new ideas in the future of instrument innovations
Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum
<p>Abstract</p> <p>Background</p> <p>Real-time RT-PCR has become a powerful technique to monitor low-abundance mRNA expression and is a useful tool when examining bacterial gene expression inside infected host tissues. However, correct evaluation of data requires accurate and reliable normalisation against internal standards. Thus, the identification of reference genes whose expression does not change during the course of the experiment is of paramount importance. Here, we present a study where manipulation of cultural growth conditions and <it>in planta </it>experiments have been used to validate the expression stability of reference gene candidates for the plant pathogen <it>Pectobacterium atrosepticum</it>, belonging to the family <it>Enterobacteriaceae</it>.</p> <p>Results</p> <p>Of twelve reference gene candidates tested, four proved to be stably expressed both in six different cultural growth conditions and <it>in planta</it>. Two of these genes (<it>recA </it>and <it>ffh</it>), encoding recombinase A and signal recognition particle protein, respectively, proved to be the most stable set of reference genes under the experimental conditions used. In addition, genes <it>proC </it>and <it>gyrA</it>, encoding pyrroline-5-carboxylate reductase and DNA gyrase, respectively, also displayed relatively stable mRNA expression levels.</p> <p>Conclusion</p> <p>Based on these results, we suggest <it>recA </it>and <it>ffh </it>as suitable candidates for accurate normalisation of real-time RT-PCR data for experiments investigating the plant pathogen <it>P. atrosepticum </it>and potentially other related pathogens.</p
Potato disease detection using a UAV equipped with commercial off-the-shelf digital cameras
Unmanned Aerial Vehicles (UAV) have become useful and affordable research tools that show great promise for a variety of precision agriculture applications due to the unique aerial prospective they can provide (Shahbazi et al. 2014). In Scotland Blackleg disease is largely caused by Pectobacterium atrosepticum (Pba), via contaminated seed tubers (Skelsey et al. 2016). Worldwide, blackleg disease is a major contributor to the loss of potato crops and checking for its presence istime consuming and can inadvertently damage the crop canopy. Therefore this project was initiated to answer the question:❖ Can the onset of black disease be detected using a UAV equippedwith commercial off-the-shelf (COTS) digital cameras
The isolation of novel "Erwinia" phages and their use in the study of bacterial phytopathogenicity
A number of bacteriophages were isolated on the "soft rot" phytopathogens Erwinia carotovora subsp. atroseptica SCRI1043 and Erwinia carotovora subsp. carotovora SCRI193. Several of these phages were used to obtain phage resistant mutants of SCRI1043, in order to investigate the role of the bacterial cell surface in virulence. While a number of phenotypic properties relating to pathogenicity and virulence of this strain have already been uncovered, little is known about the role of the cell surface in virulence. It was hoped that the use of phages would allow selection of mutants altered in both cell surface and virulence.
Two phage resistant mutants, A5/22 and A5/8, exhibited reduced virulence when inoculated into potato plants, and were investigated further. Both mutants showed pleiotropic phenotypes. As well as reduced virulence and phage resistance, these mutants showed a number of other phenotypic alterations including, a reduction in the production of plant cell wall degrading enzymes, increased sensitivity to surface active agents, alterations in lipopolysaccharide and outer membrane protein profiles and reduced motility. A5/22 also exhibited bacteriostasis in the presence of galactose. Mutant A5/22 was more severely affected in its virulence than A5/8, which reflected in its greater deviation from the wild type phenotype. While no one phenotypic alteration could be directly associated with the reduced virulence of either mutant, a combination of several phenotypes may have been responsible.
The phages isolated in this study were the first reported for these strains of Erwinia, and were therefore characterised under a number of criteria. All phages were grouped on the basis of structural morphology, restriction endonuclease digestion and host range. This is the first detailed characterisation of phages for Erwinia carotovora subsp. atroseptica.
All isolated phages were tested for generalised transduction, a method of molecular genetic analysis so far unavailable to Erwinia carotovora subsp. atroseptica SCRI1043 and Erwinia carotovora subsp. carotovora SCRI193. Two phages, ØKP and ØMl, were capable of generalised transduction in SCRI193 and SCRI1043 respectively. Both these phages were characterised and transducing frequencies improved. ØMl is the first transducing phage reported for Erwinia carotovora subsp. atroseptica and ØKP is only the second for Erwinia carotovora subsp. carotovora. Both phages are now being used extensively in the laboratory
A Histological Assessment of the Mechanism of Early-Stage Healing of a Biphasic Calcium Phosphate in an \u3cem\u3eIn vivo\u3c/em\u3e Rabbit Model
The healing mechanism of osteoconductive biphasic calcium phosphate granules was investigated by a histological assessment of early-stage bone deposition and remodeling. The deposition of de novo bone on the scaffold granules was observed to initiate at the defect periphery by week one and in the bulk of the defect incorporating the granules by week four. New bone tissue was deposited in the space provided by the macroporosity and was observed in direct apposition to the implanted material confirming the bioactivity of the biphasic calcium phosphate. The granules were removed through a cell-mediated resorption process that was observed to begin as early as week two following surgery. Mature lamellar bone, fatty bone marrow, and vascularization was observed throughout the bulk of the defect with the cortical shell healed by week twelve. This healing mechanism was found to balance bone formation and implant resorption resulting in complete healing of the corticocancellous defect in the rabbit femoral condyle
- …
