116 research outputs found
Density‐ and size‐dependent mortality in fish early life stages
The importance of survival and growth variations early in life for population dynamics depends on the degrees of compensatory density dependence and size dependence in survival at later life stages. Quantifying density‐ and size‐dependent mortality at different juvenile stages is therefore important to understand and potentially predict the recruitment to the population. We applied a statistical state‐space modelling approach to analyse time series of abundance and mean body size of larval and juvenile fish. The focus was to identify the importance of abundance and body size for growth and survival through successive larval and juvenile age intervals, and to quantify how the dynamics propagate through the early life to influence recruitment. We thus identified both relevant ages and mechanisms (i.e. density dependence and size dependence in survival and growth) linking recruitment variability to early life dynamics. The analysis was conducted on six economically and ecologically important fish populations from cold temperate and sub‐arctic marine ecosystems. Our results underscore the importance of size for survival early in life. The comparative analysis suggests that size‐dependent mortality and density‐dependent growth frequently occur at a transition from pelagic to demersal habitats, which may be linked to competition for suitable habitat. The generality of this hypothesis warrants testing in future research.publishedVersio
Integrated Modeling to Evaluate Climate Change Impacts on Coupled Social-Ecological Systems in Alaska
The Alaska Climate Integrated Modeling (ACLIM) project represents a comprehensive, multi-year, interdisciplinary effort to characterize and project climate-driven changes to the eastern Bering Sea (EBS) ecosystem, from physics to fishing communities. Results from the ACLIM project are being used to understand how different regional fisheries management approaches can help promote adaptation to climate-driven changes to sustain fish and shellfish populations and to inform managers and fishery dependent communities of the risks associated with different future climate scenarios. The project relies on iterative communications and outreaches with managers and fishery-dependent communities that have informed the selection of fishing scenarios. This iterative approach ensures that the research team focuses on policy relevant scenarios that explore realistic adaptation options for managers and communities. Within each iterative cycle, the interdisciplinary research team continues to improve: methods for downscaling climate models, climate-enhanced biological models, socio-economic modeling, and management strategy evaluation (MSE) within a common analytical framework. The evolving nature of the ACLIM framework ensures improved understanding of system responses and feedbacks are considered within the projections and that the fishing scenarios continue to reflect the management objectives of the regional fisheries management bodies. The multi-model approach used for projection of biological responses, facilitates the quantification of the relative contributions of climate forcing scenario, fishing scenario, parameter, and structural uncertainty with and between models. Ensemble means and variance within and between models inform risk assessments under different future scenarios. The first phase of projections of climate conditions to the end of the 21st century is complete, including projections of catch for core species under baseline (status quo) fishing conditions and two alternative fishing scenarios are discussed. The ACLIM modeling framework serves as a guide for multidisciplinary integrated climate impact and adaptation decision making in other large marine ecosystems
Correction: The Minderoo-Monaco Commission on Plastics and Human Health
This article details a correction to: Landrigan PJ, Raps H, Cropper M, et al. The Minderoo-Monaco Commission on Plastics and Human Health. Annals of Global Health. 2023; 89(1): 23. DOI: https://doi.org/10.5334/aogh.4056
Synthesis ans structural studies onf 3-acylamino-4-amino-2,3-dihydro-2-iminothiazole-5-carboxylates and 4-acylhydrazino-2-aminothiazole-5-carboxylates
Ruthenium complexes with 1,1'-biisoquinoline as ligand. Synthesis and Hydrogenation activity
Copper(II), nickel(II) and iron(II) complexes of 2,6-diacetylpyridine bis{[DL-hydroxy(phenyl)acetic]hydrazone}. X-ray structure of a 1:2 metal:ligand nickel complex
Heptacoordination in MnII, NiII, and CuII complexes of 2,6-diacetylpyridine bis(acetylhydrazone)
A ligand for human CD48 on epithelial cells.
Abstract
CD48 is a member of the Ig superfamily with a high degree of sequence homology to CD58 (LFA-3). In rodents, CD48 is the ligand for CD2 whereas in humans, CD58 is the ligand for CD2. Despite intensive efforts, no ligand for human CD48 has been convincingly demonstrated. We now show that a ligand for human CD48 is present on epithelial cells. The ligand was detected based on the ability of epithelial cells to bind both a decameric, soluble CD48 IgM fusion protein and monomeric CD48 immobilized on plastic dishes. mAbs raised to the ligand completely block binding of CD48 to all epithelial cells tested. We further show that the cell surface proteoglycan CD44 plays an auxiliary role in the binding of epithelial cells to CD48 and that this interaction involves the glycosaminoglycan binding site of CD44. No interaction of human CD48 with CD2 was detected. This is the first clear demonstration that human CD48 can function as an adhesion molecule and suggests a role for CD48 in lymphocyte epithelial cell interactions.</jats:p
- …
