9,472 research outputs found

    Heavy Fermion Bound States for Diphoton Excess at 750GeV \sim Collider and Cosmological Constraints \sim

    Full text link
    A colored heavy particle with sufficiently small width may form non-relativistic bound states when they are produced at the large hadron collider\,(LHC), and they can annihilate into a diphoton final state. The invariant mass of the diphoton would be around twice of the colored particle mass. In this paper, we study if such bound state can be responsible for the 750 GeV diphoton excess reported by ATLAS and CMS. We found that the best-fit signal cross section is obtained for the SU(2)L_L singlet colored fermion XX with YX=4/3Y_X=4/3. Having such an exotic hypercharge, the particle is expected to decay through some higher dimensional operators, consistent with the small width assumption. The decay of XX may involve a stable particle χ\chi, if both XX and χ\chi are odd under some conserved Z2Z_2 symmetry. In that case, the particle XX suffers from the constraints of jets + missing ETE_T searches by ATLAS and CMS at 8 TeV and 13 TeV. We found that such a scenario still survives if the mass difference between XX and χ\chi is above \sim 30 GeV for mX375m_X \sim 375 GeV. Even assuming pair annihilation of χ\chi is small, the relic density of χ\chi is small enough if the mass difference between XX and χ\chi is smaller than \sim 40 GeV

    Outcome Independence of Entanglement in One-Way Computation

    Full text link
    We show that the various intermediate states appearing in the process of one-way computation at a given step of measurement are all equivalent modulo local unitary transformations. This implies, in particular, that all those intermediate states share the same entanglement irrespective of the measurement outcomes, indicating that the process of one-way computation is essentially unique with respect to local quantum operations.Comment: 6 pages, 4 figure

    CO Observations of Luminous IR Galaxies at Intermediate Redshift

    Get PDF
    We present new measurement of 12^{12}CO(J=10J=1-0) emission from 16 luminous infrared galaxies (LIGs) at intermediate redshift (cz10,00050,000kms1cz \sim 10,000 - 50,000 {\rm km s^{-1}}). These new data were selected by isolated and normal morphology. The CO observations were performed using the NRO 45-m telescope. Comparison of the CO and dust properties of the new result with those from other CO measurements revealed characteristics of this sample: (1) It is the deepest CO observations of IRAS galaxies at intermediate redshift without strong interaction features. (2) It has typical properties of normal IRAS galaxies in terms of star-formation efficiency, color-color diagrams and galactic nuclear activity. (3) It has smaller gas-to-dust ratio than normal IRAS galaxies. This can be explained by two-component dust model, and our sample consists of most of warm dust.Comment: To appear in PASJ, text 9 pages, 5 tables, and 12 figure

    The contrasting fission potential-energy structure of actinides and mercury isotopes

    Full text link
    Fission-fragment mass distributions are asymmetric in fission of typical actinide nuclei for nucleon number AA in the range 228A258228 \lnsim A \lnsim 258 and proton number ZZ in the range 90Z10090\lnsim Z \lnsim 100. For somewhat lighter systems it has been observed that fission mass distributions are usually symmetric. However, a recent experiment showed that fission of 180^{180}Hg following electron capture on 180^{180}Tl is asymmetric. We calculate potential-energy surfaces for a typical actinide nucleus and for 12 even isotopes in the range 178^{178}Hg--200^{200}Hg, to investigate the similarities and differences of actinide compared to mercury potential surfaces and to what extent fission-fragment properties, in particular shell structure, relate to the structure of the static potential-energy surfaces. Potential-energy surfaces are calculated in the macroscopic-microscopic approach as functions of fiveshape coordinates for more than five million shapes. The structure of the surfaces are investigated by use of an immersion technique. We determine properties of minima, saddle points, valleys, and ridges between valleys in the 5D shape-coordinate space. Along the mercury isotope chain the barrier heights and the ridge heights and persistence with elongation vary significantly and show no obvious connection to possible fragment shell structure, in contrast to the actinide region, where there is a deep asymmetric valley extending from the saddle point to scission. The mechanism of asymmetric fission must be very different in the lighter proton-rich mercury isotopes compared to the actinide region and is apparently unrelated to fragment shell structure. Isotopes lighter than 192^{192}Hg have the saddle point blocked from a deep symmetric valley by a significant ridge. The ridge vanishes for the heavier Hg isotopes, for which we would expect a qualitatively different asymmetry of the fragments.Comment: 8 pages, 9 figure
    corecore