1,641 research outputs found
A Theoretical Study on Spin-Dependent Transport of "Ferromagnet/Carbon Nanotube Encapsulating Magnetic Atoms/Ferromagnet" Junctions with 4-Valued Conductances
As a novel function of ferromagnet (FM)/spacer/FM junctions, we theoretically
investigate multiple-valued (or multi-level) cell property, which is in
principle realized by sensing conductances of four states recorded with
magnetization configurations of two FMs; (up,up), (up,down), (down,up),
(down,down). In order to sense all the states, 4-valued conductances
corresponding to the respective states are necessary. We previously proposed
that 4-valued conductances are obtained in FM1/spin-polarized spacer (SPS)/FM2
junctions, where FM1 and FM2 have different spin polarizations, and the spacer
depends on spin [J. Phys.: Condens. Matter 15, 8797 (2003)]. In this paper, an
ideal SPS is considered as a single-wall armchair carbon nanotube encapsulating
magnetic atoms, where the nanotube shows on-resonance or off-resonance at the
Fermi level according to its length. The magnitude of the obtained 4-valued
conductances has an opposite order between the on-resonant nanotube and the
off-resonant one, and this property can be understood by considering electronic
states of the nanotube. Also, the magnetoresistance ratio between (up,up) and
(down,down) can be larger than the conventional one between parallel and
anti-parallel configurations.Comment: 10 pages, 4 figures, accepted for publication in J. Phys.: Condens.
Matte
HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse
HSP90, found in all kingdoms of life, is a major chaperone protein regulating many client proteins. We demonstrated that HSP90α, one of two paralogs duplicated in vertebrates, plays an important role in the biogenesis of fetal PIWI-interacting RNAs (piRNA), which act against the transposon activities, in mouse male germ cells. The knockout mutation of Hsp90α resulted in a large reduction in the expression of primary and secondary piRNAs and mislocalization of MIWI2, a PIWI homolog. Whereas the mutation in Fkbp6 encoding a co-chaperone reduced piRNAs of 28–32 nucleotides in length, the Hsp90α mutation reduced piRNAs of 24–32 nucleotides, suggesting the presence of both FKBP6-dependent and -independent actions of HSP90α. Although DNA methylation and mRNA levels of L1 retrotransposon were largely unchanged in the Hsp90α mutant testes, the L1-encoded protein was increased, suggesting the presence of post-transcriptional regulation. This study revealed the specialized function of the HSP90α isofom in the piRNA biogenesis and repression of retrotransposons during the development of male germ cells in mammals
Irreversibility and Entropy Production in Transport Phenomena I
*First-principles derivation of the entropy production in erectric static
conduction. *The second-order (symmetric) density matrix contributes to the
entropy production. *New schemes of steady states formulated using a
relaxation-type von Neumann equation. *Stationary temperature is introduced to
characterize steady states. *The mechanism of the entropy production in steady
states is also clarified.Comment: Physica A (2011) in pres
The pharmacokinetics of anthocyanins and their metabolites in humans
Background and Purpose: Anthocyanins are phytochemicals with reported vasoactive bioactivity. However, given their instability at neutral pH, they are presumed to undergo significant degradation and subsequent biotransformation. The aim of the present study was to establish the pharmacokinetics of the metabolites of cyanidin-3-glucoside (C3G), a widely consumed dietary phytochemical with potential cardioprotective properties. Experimental Approach: A 500 mg oral bolus dose of 6,8,10,3′,5′-13C5-C3G was fed to eight healthy male participants, followed by a 48 h collection (0, 0.5, 1, 2, 4, 6, 24, 48 h) of blood, urine and faecal samples. Samples were analysed by HPLC-ESI-MS/MS with elimination kinetics established using non-compartmental pharmacokinetic modelling. Key Results: Seventeen 13C-labelled compounds were identified in the serum, including 13C5-C3G, its degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), 13 metabolites of PCA and 1 metabolite derived from PGA. The maximal concentrations of the phenolic metabolites (Cmax) ranged from 10 to 2000 nM, between 2 and 30 h (tmax) post-consumption, with half-lives of elimination observed between 0.5 and 96 h. The major phenolic metabolites identified were hippuric acid and ferulic acid, which peaked in the serum at approximately 16 and 8 h respectively. Conclusions and Implications: Anthocyanins are metabolized to a structurally diverse range of metabolites that exhibit dynamic kinetic profiles. Understanding the elimination kinetics of these metabolites is key to the design of future studies examining their utility in dietary interventions or as therapeutics for disease risk reduction
A Variational Procedure for Time-Dependent Processes
A simple variational Lagrangian is proposed for the time development of an
arbitrary density matrix, employing the "factorization" of the density. Only
the "kinetic energy" appears in the Lagrangian. The formalism applies to pure
and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport
theory, etc. It recaptures the Least Dissipation Function condition of
Rayleigh-Onsager {\bf and in practical applications is flexible}. The
variational proposal is tested on a two level system interacting that is
subject, in one instance, to an interaction with a single oscillator and, in
another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure
Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study
BACKGROUND: Evidence suggests that the consumption of anthocyanin-rich foods beneficially affects cardiovascular health; however, the absorption, distribution, metabolism, and elimination (ADME) of anthocyanin-rich foods are relatively unknown. OBJECTIVE: We investigated the ADME of a (13)C5-labeled anthocyanin in humans. DESIGN: Eight male participants consumed 500 mg isotopically labeled cyanidin-3-glucoside (6,8,10,3',5'-(13)C5-C3G). Biological samples were collected over 48 h, and (13)C and (13)C-labeled metabolite concentrations were measured by using isotope-ratio mass spectrometry and liquid chromatography-tandem mass spectrometry. RESULTS: The mean +/- SE percentage of (13)C recovered in urine, breath, and feces was 43.9 +/- 25.9% (range: 15.1-99.3% across participants). The relative bioavailability was 12.38 +/- 1.38% (5.37 +/- 0.67% excreted in urine and 6.91 +/- 1.59% in breath). Maximum rates of (13)C elimination were achieved 30 min after ingestion (32.53 +/- 14.24 mug(13)C/h), whereas (13)C-labeled metabolites peaked (maximum serum concentration: 5.97 +/- 2.14 mumol/L) at 10.25 +/- 4.14 h. The half-life for (13)C-labeled metabolites ranged between 12.44 +/- 4.22 and 51.62 +/- 22.55 h. (13)C elimination was greatest between 0 and 1 h for urine (90.30 +/- 15.28 mug/h), at 6 h for breath (132.87 +/- 32.23 mug/h), and between 6 and 24 h for feces (557.28 +/- 247.88 mug/h), whereas the highest concentrations of (13)C-labeled metabolites were identified in urine (10.77 +/- 4.52 mumol/L) and fecal samples (43.16 +/- 18.00 mumol/L) collected between 6 and 24 h. Metabolites were identified as degradation products, phenolic, hippuric, phenylacetic, and phenylpropenoic acids. CONCLUSION: Anthocyanins are more bioavailable than previously perceived, and their metabolites are present in the circulation fo
Notes on the life history and a description of the immature stages of the water bug, Aphelocheirus vittatus (Heteriptera: Aphelocheiridae)
Article信州大学理学部附属諏訪臨湖実験所報告 9: 29-34(1995)departmental bulletin pape
- …
