57 research outputs found
Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments.
Polyreactive antibodies (Abs) constitute a major proportion of the early Ab repertoire and are an important component of the natural defense mechanisms against infections. They are primarily immunoglobulin M (IgM) and bind a variety of structurally dissimilar self and exogenous antigens (Ags) with moderate affinity. We analyzed the contribution of Ig polyvalency and of heavy (H) and light (L) chain variable (V) regions to polyreactivity in recombinatorial experiments involving the VH-diversity(D)-JH and V kappa-J kappa gene segments of a human polyreactive IgM, monoclonal antibody 55 (mAb55), and those of a human monoreactive anti-insulin IgG, mAb13, in an in vitro C gamma l and C kappa human expression system. These mAbs are virtually identical in their VH and V kappa gene segment sequences. First, we expressed the VH-D-JH and V kappa-J kappa genes of the IgM mAb55 as V segments of an IgG molecule. The bivalent recombinant IgG Ab bound multiple Ags with an efficiency only slightly lower than that of the original decavalent IgM mAb55, suggesting that class switch to IgG does not affect the Ig polyreactivity. Second, we coexpressed the mAb55-derived H or kappa chain with the mAb13-derived kappa or H chain, respectively. The hybrid IgG Ab bearing the mAb55-derived H chain V segment paired with the mAb13-derived kappa V segment, but not that bearing the mAb13-derived H chain V segment paired with the mAb55-derived kappa V segment, bound multiple Ags, suggesting that the Ig H chain plays a major role in the Ig polyreactivity. Third, we shuffled the framework 1 (FR1)-FR3 and complementarity determining region 3 (CDR3) regions of the H and kappa chain V segments of the mAB55-derived IgG molecule with the corresponding regions of the monoreactive IgG mAb13. The mAb55-derived IgG molecule lost polyreactivity when the H chain CDR3, but not the FR1-FR3 region, was replaced by the corresponding region of mAb13, suggesting that within the H chain, the CDR3 provides the major structural correlate for multiple Ag-binding. This was formally proved by the multiple Ag-binding of the originally monoreactive mAb13-derived IgG molecule grafted with the mAb55-derived H chain CDR3. The polyreactivity of this chimeric IgG was maximized by grafting of the mAb55-derived kappa chain FR1-FR3, but not that of the kappa chain CDR3.(ABSTRACT TRUNCATED AT 400 WORDS
A solitary Peutz-Jeghers type polyp in the jejunum of a 19 year-old male
A 19-year old male presented with melena and anemia. A duodenoscopy revealed no abnormalities, but a small bowel X-ray series demonstrated a large jejunal polyp. This 4 cm large polyp was visualised during peroperative small bowel endoscopy and was subsequently surgically removed. The polyp had the characteristic histologic appearance of a Peutz-Jeghers type polyp, but the patient had no other signs of Peutz-Jeghers syndrome, such as the characteristic mucocutaneous pigmentation, the presence of multiple polyps or a positive family history. After removal of the polyp, melena did not recur and his hemoglobin concentration normalized. Altogether, the patient does not fulfill the diagnostic criteria for Peutz-Jeghers syndrome and appears to have a solitary jejunal Peutz-Jeghers type polyp. All previously reported patients with such polyps were older than this patient
Recovery of a human natural antibody against the noncollagenous-1 domain of type IV collagen using humanized models
Recommended from our members
Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments.
Polyreactive antibodies (Abs) constitute a major proportion of the early Ab repertoire and are an important component of the natural defense mechanisms against infections. They are primarily immunoglobulin M (IgM) and bind a variety of structurally dissimilar self and exogenous antigens (Ags) with moderate affinity. We analyzed the contribution of Ig polyvalency and of heavy (H) and light (L) chain variable (V) regions to polyreactivity in recombinatorial experiments involving the VH-diversity(D)-JH and V kappa-J kappa gene segments of a human polyreactive IgM, monoclonal antibody 55 (mAb55), and those of a human monoreactive anti-insulin IgG, mAb13, in an in vitro C gamma l and C kappa human expression system. These mAbs are virtually identical in their VH and V kappa gene segment sequences. First, we expressed the VH-D-JH and V kappa-J kappa genes of the IgM mAb55 as V segments of an IgG molecule. The bivalent recombinant IgG Ab bound multiple Ags with an efficiency only slightly lower than that of the original decavalent IgM mAb55, suggesting that class switch to IgG does not affect the Ig polyreactivity. Second, we coexpressed the mAb55-derived H or kappa chain with the mAb13-derived kappa or H chain, respectively. The hybrid IgG Ab bearing the mAb55-derived H chain V segment paired with the mAb13-derived kappa V segment, but not that bearing the mAb13-derived H chain V segment paired with the mAb55-derived kappa V segment, bound multiple Ags, suggesting that the Ig H chain plays a major role in the Ig polyreactivity. Third, we shuffled the framework 1 (FR1)-FR3 and complementarity determining region 3 (CDR3) regions of the H and kappa chain V segments of the mAB55-derived IgG molecule with the corresponding regions of the monoreactive IgG mAb13. The mAb55-derived IgG molecule lost polyreactivity when the H chain CDR3, but not the FR1-FR3 region, was replaced by the corresponding region of mAb13, suggesting that within the H chain, the CDR3 provides the major structural correlate for multiple Ag-binding. This was formally proved by the multiple Ag-binding of the originally monoreactive mAb13-derived IgG molecule grafted with the mAb55-derived H chain CDR3. The polyreactivity of this chimeric IgG was maximized by grafting of the mAb55-derived kappa chain FR1-FR3, but not that of the kappa chain CDR3.(ABSTRACT TRUNCATED AT 400 WORDS
A human anti-insulin IgG autoantibody apparently arises through clonal selection from an insulin-specific "germ-line" natural antibody template. Analysis by V gene segment reassortment and site-directed mutagenesis.
Abstract
We analyzed the structural correlates underlying the insulin-dependent selection of the specific anti-insulin IgG1 kappa mAb13-producing cell clone, derived from a patient with insulin-dependent diabetes mellitus treated with recombinant human insulin. First, we cloned the germ-line genes that putatively gave rise to the expressed VH and V kappa segments and used them to generate the full (unmutated) "germ-line revertant" of the "wild-type" (somatically mutated) mAb13, using recombinant PCR methods and an in vitro human C gamma 1 and C kappa expression system. The full "germ-line revertant" bound insulin specifically and in a dose-saturable fashion, but with a relative avidity (AVrel) more than three-fold lower than that of its wild-type counterpart (Avrel, 1.69 x 10(-8) vs 4.91 x 10(-9) g/microliters). Second, we established, by reassorting wild-type and germ-line revertant forms of the mAb13 VH and V kappa segments, that the increased Avrel for insulin of mAb13 when compared with its full "germ-line revertant" counterpart was entirely dependent on the mutations in the VH not those in the V kappa chain. Third, we determined, by site-directed mutagenesis experiments, that of the three mutations in the mAb13 VH segment (Ser--&gt;Gly, Ser--&gt;Thr, and Ser--&gt;Arg at positions 31, 56, and 58, respectively), only Arg58 was crucial in increasing the mAb13 Avrel (from 1.44 x 10(-8) to 5.14 x 10(-9) g/microliters) and affinity (Kd, from 189 to 59 nM) for insulin. The affinity enhancement mediated by the VH segment Arg58 residue reflected about a threefold decrease in dissociation rate constant (Koff, from 4.92 x 10(-3) to 1.54 x 10(-3) s-1) but not an increase in association rate constant (Kon, from 2.60 x 10(4) to 2.61 x 10(4) M-1 s-1), and it contrasted with the complete loss of insulin binding resulting from the substitution of the VH segment Asn52 by Lys. The present findings suggest that human insulin, a self Ag, has the potential to recruit a natural autoantibody-producing cell precursor expressing a specific surface receptor for Ag in unmutated configuration, and drive it through affinity maturation. They also show that binding of insulin by such a receptor can be enhanced or completely abrogated by a single amino acid change.</jats:p
VH and V kappa segment structure of anti-insulin IgG autoantibodies in patients with insulin-dependent diabetes mellitus. Evidence for somatic selection.
Abstract
In some patients with insulin-dependent (type I) diabetes mellitus (IDDM), autoantibodies to insulin are present at diagnosis. After initiation of the treatment with not only animal but also human insulin, anti-insulin, mainly IgG, autoantibodies become a major component of the autoimmune response in virtually all IDDM patients. Their structure, however, is still relatively unknown. We analyzed the structure of the VH and V kappa segments of three human IgG mAb derived from three IDDM patients. The sequences of VH genes of two IgG, mAb13 and mAb48, were 98.3 and 96.6% identical with those of the H11 and 1.9III genes (VHIII family), respectively. The sequence of the VH gene of the third IgG, mAb49, was 98.6% identical with that of the 51p1 gene (VHI family). All three IgG mAb used V kappa III segments. The V kappa III gene sequences of mAb13 and mAb49 were 97.9 and 98.9% identical, respectively, to that of the kv3g gene; the mAb48 V kappa gene sequence was 96.5% identical to that of the kv328 gene. The VH and/or V kappa segments of these anti-insulin IgG mAb are similar to Ig V genes expressed in the fetal, and adult normal and autoimmune B cell repertoires. The nucleotide differences displayed by the three anti-insulin IgG mAb VH gene sequences, when compared with those of the closest reported germ-line genes, were concentrated in the CDR (6.2 x 10(-2) and 0.8 x 10(-2) difference/base in CDR and FR, respectively; p &lt; 0.01, chi 2 test), and yielded a significantly higher putative replacement (R) to silent (S) mutation ratio in the CDR (12.0) than in the framework (0.2). The concentration of nucleotide differences in the CDR and their high R:S putative mutation ratios were consistent with the hypothesis that these expressed VH genes underwent a process of somatic mutation and Ag-driven clonal selection. That such differences constituted somatic point-mutations was formally proved in IgG mAb13, by differentially targeted PCR amplification and Southern blot hybridization of the mAb13-producing cell line DNA. The putative germ-line gene that gave rise to the expressed VH segment was cloned using genomic DNA from PMN of the same patient whose B cells were used for the generation of this mAb. Overall, in the anti-insulin IgG mAb VH and V kappa III genes, the (putative and verified) somatic point-mutations yielded 27 amino acid replacements, of which 14 nonconserved. Four of these resulted in positively charged residues, three Arg and one His.(ABSTRACT TRUNCATED AT 400 WORDS)</jats:p
Cytokeratin-positive cells in bone marrow for identifying distant micrometastasis of gastric cancer
- …
