2,664 research outputs found
Pulses of chaos synchronization in coupled map chains with delayed transmission
Pulses of synchronization in chaotic coupled map lattices are discussed in
the context of transmission of information. Synchronization and
desynchronization propagate along the chain with different velocities which are
calculated analytically from the spectrum of convective Lyapunov exponents.
Since the front of synchronization travels slower than the front of
desynchronization, the maximal possible chain length for which information can
be transmitted by modulating the first unit of the chain is bounded.Comment: 4 pages, 6 figures, updated version as published in PR
Sublattice synchronization of chaotic networks with delayed couplings
Synchronization of chaotic units coupled by their time delayed variables are
investigated analytically. A new type of cooperative behavior is found:
sublattice synchronization. Although the units of one sublattice are not
directly coupled to each other, they completely synchronize without time delay.
The chaotic trajectories of different sublattices are only weakly correlated
but not related by generalized synchronization. Nevertheless, the trajectory of
one sublattice is predictable from the complete trajectory of the other one.
The spectra of Lyapunov exponents are calculated analytically in the limit of
infinite delay times, and phase diagrams are derived for different topologies
STM/STS Study on 4a X 4a Electronic Charge Order and Inhomogeneous Pairing Gap in Superconducting Bi2Sr2CaCu2O8+d
We performed STM/STS measurements on underdoped Bi2212 crystals with doping
levels p ~ 0.11, ~ 0.13 and ~ 0.14 to examine the nature of the nondispersive
4a X 4a charge order in the superconducting state at T << Tc. The charge order
appears conspicuously within the pairing gap, and low doping tends to favor the
charge order. We point out the possibility that the 4a X 4a charge order will
be dynamical in itself, and pinned down over regions with effective pinning
centers. The pinned 4a X 4a charge order is closely related to the spatially
inhomogeneous pairing gap structure, which has often been reported in STS
measurements on high-Tc cuprates.Comment: 12 pages, 16 figures, to be published in Phys. Rev.
Bayesian Symbol Detection in Wireless Relay Networks via Likelihood-Free Inference
This paper presents a general stochastic model developed for a class of
cooperative wireless relay networks, in which imperfect knowledge of the
channel state information at the destination node is assumed. The framework
incorporates multiple relay nodes operating under general known non-linear
processing functions. When a non-linear relay function is considered, the
likelihood function is generally intractable resulting in the maximum
likelihood and the maximum a posteriori detectors not admitting closed form
solutions. We illustrate our methodology to overcome this intractability under
the example of a popular optimal non-linear relay function choice and
demonstrate how our algorithms are capable of solving the previously
intractable detection problem. Overcoming this intractability involves
development of specialised Bayesian models. We develop three novel algorithms
to perform detection for this Bayesian model, these include a Markov chain
Monte Carlo Approximate Bayesian Computation (MCMC-ABC) approach; an Auxiliary
Variable MCMC (MCMC-AV) approach; and a Suboptimal Exhaustive Search Zero
Forcing (SES-ZF) approach. Finally, numerical examples comparing the symbol
error rate (SER) performance versus signal to noise ratio (SNR) of the three
detection algorithms are studied in simulated examples
Learning and predicting time series by neural networks
Artificial neural networks which are trained on a time series are supposed to
achieve two abilities: firstly to predict the series many time steps ahead and
secondly to learn the rule which has produced the series. It is shown that
prediction and learning are not necessarily related to each other. Chaotic
sequences can be learned but not predicted while quasiperiodic sequences can be
well predicted but not learned.Comment: 5 page
Unusual interplay between copper-spin and vortex dynamics in slightly overdoped La{1.83}Sr{0.17}CuO{4}
Our inelastic neutron scattering experiments of the spin excitations in the
slightly overdoped La{1.83}Sr{0.17}CuO{4} compound show that, under the
application of a magnetic field of 5 Tesla, the low-temperature susceptibility
undergoes a weight redistribution centered at the spin-gap energy. Furthermore,
by comparing the temperature dependence of the neutron data with
ac-susceptibility and magnetization measurements, we conclude that the filling
in of the spin gap tracks the irreversibility/melting temperature rather than
Tc2, which indicates an unusual interplay between the magnetic vortices and the
spin excitations even in the slightly overdoped regime of high-temperature
superconductors.Comment: 7 pages, including 5 figure
Buffer gas induced collision shift for the Sr clock transition
Precision saturation spectroscopy of the is
performed in a vapor cell filled with various rare gas including He, Ne, Ar,
and Xe. By continuously calibrating the absolute frequency of the probe laser,
buffer gas induced collision shifts of kHz are detected with gas
pressure of 1-20 mTorr. Helium gave the largest fractional shift of . Comparing with a simple impact calculation and a
Doppler-limited experiment of Holtgrave and Wolf [Phys. Rev. A {\bf 72}, 012711
(2005)], our results show larger broadening and smaller shifting coefficient,
indicating effective atomic loss due to velocity changing collisions. The
applicability of the result to the optical lattice clock
transition is also discussed
- …
