4,645 research outputs found
Optimized generation of spatial qudits by using a pure phase spatial light modulator
We present a method for preparing arbitrary pure states of spatial qudits,
namely, D-dimensional (D > 2) quantum systems carrying information in the
transverse momentum and position of single photons. For this purpose, a set of
D slits with complex transmission are displayed on a spatial light modulator
(SLM). In a recent work we have shown a method that requires a single
phase-only SLM to control independently the complex coefficients which define
the quantum state of dimension D. The amplitude information was codified by
introducing phase gratings inside each slit and the phase value of the complex
transmission was added to the phase gratings. After a spatial filtering process
we obtained in the image plane the desired qudit state. Although this method
has proven to be a good alternative to compact the previously reported
architectures, it presents some features that could be improved. In this paper
we present an alternative scheme to codify the required phase values that
minimizes the effects of temporal phase fluctuations associated to the SLM
where the codification is carried on. In this scheme the amplitudes are set by
appropriate phase gratings addressed at the SLM while the relative phases are
obtained by a lateral displacement of these phase gratings. We show that this
method improves the quality of the prepared state and provides very high
fidelities of preparation for any state. An additional advantage of this scheme
is that a complete 2\pi modulation is obtained by shifting the grating by one
period, and hence the encoding is not limited by the phase modulation range
achieved by the SLM. Numerical simulations, that take into account the phase
fluctuations, show high fidelities for thousands of qubit states covering the
whole Bloch sphere surface. Similar analysis are performed for qudits with D =
3 and D = 7.Comment: 12 pages, 7 figure
Conditional purity and quantum correlation measures in two qubit mixed states
We analyze and show experimental results of the conditional purity, the
quantum discord and other related measures of quantum correlation in mixed
two-qubit states constructed from a pair of photons in identical polarization
states. The considered states are relevant for the description of spin pair
states in interacting spin chains in a transverse magnetic field. We derive
clean analytical expressions for the conditional local purity and other
correlation measures obtained as a result of a remote local projective
measurement, which are fully verified by the experimental results. A simple
exact expression for the quantum discord of these states in terms of the
maximum conditional purity is also derived.Comment: 16 pages, 5 figures, minor changes, to be published in J. Phys.
Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum
The diffraction spectrum of coherent waves scattered from fractal supports is
calculated exactly. The fractals considered are of the class generated
iteratively by successive dilations and translations, and include
generalizations of the Cantor set and Sierpinski carpet as special cases. Also
randomized versions of these fractals are treated. The general result is that
the diffraction intensities obey a strict recursion relation, and become
self-affine in the limit of large iteration number, with a self-affinity
exponent related directly to the fractal dimension of the scattering object.
Applications include neutron scattering, x-rays, optical diffraction, magnetic
resonance imaging, electron diffraction, and He scattering, which all display
the same universal scaling.Comment: 20 pages, 11 figures. Phys. Rev. E, in press. More info available at
http://www.fh.huji.ac.il/~dani
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
- …
