86 research outputs found
Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer's Disease
Alzheimer’s disease (AD) is a progressive disorder that affects cognitive brain functions and starts many years before its clinical manifestations. A biomarker that provides a quantitative measure of changes in the brain due to AD in the early stages would be useful for early diagnosis of AD, but this would involve dealing with large numbers of people because up to 50% of dementia sufferers do not receive formal diagnosis. Thus, there is a need for accurate, low-cost, and easy to use biomarkers that could be used to detect AD in its early stages. Potentially, electroencephalogram (EEG) based biomarkers can play a vital role in early diagnosis of AD as they can fulfill these needs. This is a cross-sectional study that aims to demonstrate the usefulness of EEG complexity measures in early AD diagnosis. We have focused on the three complexity methods which have shown the greatest promise in the detection of AD, Tsallis entropy (TsEn), Higuchi Fractal Dimension (HFD), and Lempel-Ziv complexity (LZC) methods. Unlike previous approaches, in this study, the complexity measures are derived from EEG frequency bands (instead of the entire EEG) as EEG activities have significant association with AD and this has led to enhanced performance. The results show that AD patients have significantly lower TsEn, HFD, and LZC values for specific EEG frequency bands and for specific EEG channels and that this information can be used to detect AD with a sensitivity and specificity of more than 90%
A Novel QoE-Centric SDN-Based Multipath Routing Approach for Multimedia Services over 5G Networks
© 2018 IEEE. The explosion of enhanced applications such as live video streaming, video gaming and Virtual Reality calls for efforts to optimize transport protocols to manage the increasing amount of data traffic on future 5G networks. Through bandwidth aggregation over multiple paths, the Multi-Path Transmission Control Protocol (MPTCP) can enhance the performance of network applications. MPTCP can split a large multimedia flow into subflows and apply a congestion control mechanism on each subflow. Segment Routing (SR), a promising source routing approach, has emerged to provide advanced packet forwarding over 5G networks. In this paper, we explore the utilization of MPTCP and SR in SDN-based networks to improve network resources utilization and end- user's QoE for delivering multimedia services over 5G networks. We propose a novel QoE-aware, SDN- based MPTCP/SR approach for service delivery. In order to demonstrate the feasibility of our approach, we implemented an intelligent QoE- centric Multipath Routing Algorithm (QoMRA) on an SDN source routing platform using Mininet and POX controller. We carried out experiments on Dynamic Adaptive video Steaming over HTTP (DASH) applications over various network conditions. The preliminary results show that, our QoE-aware SDN- based MPTCP/SR scheme performs better compared to the conventional TCP approach in terms of throughput, link utilization and the end-user's QoE
Discovery of Novel Biomarkers for Alzheimer's Disease from Blood
Blood-based biomarkers for Alzheimer’s disease would be very valuable because blood is a more accessible biofluid and is suitable for repeated sampling. However, currently there are no robust and reliable blood-based biomarkers for practical diagnosis. In this study we used a knowledge-based protein feature pool and two novel support vector machine embedded feature selection methods to find panels consisting of two and three biomarkers. We validated these biomarker sets using another serum cohort and an RNA profile cohort from the brain. Our panels included the proteins ECH1, NHLRC2, HOXB7, FN1, ERBB2, and SLC6A13 and demonstrated promising sensitivity (>87%), specificity (>91%), and accuracy (>89%).</jats:p
Welcome to Source Code for Biology and Medicine
This editorial introduces Source Code for Biology and Medicine, a new journal for publication of programming source code used in biology and medicine. Source Code for Biology and Medicine is an open access independent journal published by BioMed Central. We describe the journal aims, scope, benefits of open access, article processing charges, competing interests, content and article format, peer review policy and publication, and introduce the Editorial Board
Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data
Presented is a description of a Markov chain Monte Carlo (MCMC) parameter
estimation routine for use with interferometric gravitational radiational data
in searches for binary neutron star inspiral signals. Five parameters
associated with the inspiral can be estimated, and summary statistics are
produced. Advanced MCMC methods were implemented, including importance
resampling and prior distributions based on detection probability, in order to
increase the efficiency of the code. An example is presented from an
application using realistic, albeit fictitious, data.Comment: submitted to Classical and Quantum Gravity. 14 pages, 5 figure
Identification of blood biomarkers for use in point of care diagnosis tool for Alzheimer's disease.
Early diagnosis of Alzheimer's Disease (AD) is widely regarded as necessary to allow treatment to be started before irreversible damage to the brain occur and for patients to benefit from new therapies as they become available. Low-cost point-of-care (PoC) diagnostic tools that can be used to routinely diagnose AD in its early stage would facilitate this, but such tools require reliable and accurate biomarkers. However, traditional biomarkers for AD use invasive cerebrospinal fluid (CSF) analysis and/or expensive neuroimaging techniques together with neuropsychological assessments. Blood-based PoC diagnostics tools may provide a more cost and time efficient way to assess AD to complement CSF and neuroimaging techniques. However, evidence to date suggests that only a panel of biomarkers would provide the diagnostic accuracy needed in clinical practice and that the number of biomarkers in such panels can be large. In addition, the biomarkers in a panel vary from study to study. These issues make it difficult to realise a PoC device for diagnosis of AD. An objective of this paper is to find an optimum number of blood biomarkers (in terms of number of biomarkers and sensitivity/specificity) that can be used in a handheld PoC device for AD diagnosis. We used the Alzheimer's disease Neuroimaging Initiative (ADNI) database to identify a small number of blood biomarkers for AD. We identified a 6-biomarker panel (which includes A1Micro, A2Macro, AAT, ApoE, complement C3 and PPP), which when used with age as covariate, was able to discriminate between AD patients and normal subjects with a sensitivity of 85.4% and specificity of 78.6%
Quiet in class: classification, noise and the dendritic cell algorithm
Theoretical analyses of the Dendritic Cell Algorithm (DCA) have yielded several criticisms about its underlying structure and operation. As a result, several alterations and fixes have been suggested in the literature to correct for these findings. A contribution of this work is to investigate the effects of replacing the classification stage of the DCA (which is known to be flawed) with a traditional machine learning technique. This work goes on to question the merits of those unique properties of the DCA that are yet to be thoroughly analysed. If none of these properties can be found to have a benefit over traditional approaches, then “fixing” the DCA is arguably less efficient than simply creating a new algorithm. This work examines the dynamic filtering property of the DCA and questions the utility of this unique feature for the anomaly detection problem. It is found that this feature, while advantageous for noisy, time-ordered classification, is not as useful as a traditional static filter for processing a synthetic dataset. It is concluded that there are still unique features of the DCA left to investigate. Areas that may be of benefit to the Artificial Immune Systems community are suggested
Changes in the EEG amplitude as a biomarker for early detection of Alzheimer's disease.
The rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which can be quantified as a biomarker. The objective of the study reported in this paper is to develop robust EEG-based biomarkers for detecting AD in its early stages. We present a new approach to quantify the slowing of the EEG, one of the most consistent features at different stages of dementia, based on changes in the EEG amplitudes (ΔEEGA). The new approach has sensitivity and specificity values of 100% and 88.88%, respectively, and outperformed the Lempel-Ziv Complexity (LZC) approach in discriminating between AD and normal subjects
- …
