37,696 research outputs found
Comparative histological study of the reinforced area of the saccular membrane in mammals
Comparative histological study of reinforced area of saccular membrane in mammal
Pareto-Optimal Allocation of Indivisible Goods with Connectivity Constraints
We study the problem of allocating indivisible items to agents with additive
valuations, under the additional constraint that bundles must be connected in
an underlying item graph. Previous work has considered the existence and
complexity of fair allocations. We study the problem of finding an allocation
that is Pareto-optimal. While it is easy to find an efficient allocation when
the underlying graph is a path or a star, the problem is NP-hard for many other
graph topologies, even for trees of bounded pathwidth or of maximum degree 3.
We show that on a path, there are instances where no Pareto-optimal allocation
satisfies envy-freeness up to one good, and that it is NP-hard to decide
whether such an allocation exists, even for binary valuations. We also show
that, for a path, it is NP-hard to find a Pareto-optimal allocation that
satisfies maximin share, but show that a moving-knife algorithm can find such
an allocation when agents have binary valuations that have a non-nested
interval structure.Comment: 21 pages, full version of paper at AAAI-201
- …
