134 research outputs found
Dendritic flux avalanches and nonlocal electrodynamics in thin superconducting films
We present numerical and analytical studies of coupled nonlinear Maxwell and
thermal diffusion equations which describe nonisothermal dendritic flux
penetration in superconducting films. We show that spontaneous branching of
propagating flux filaments occurs due to nonlocal magnetic flux diffusion and
positive feedback between flux motion and Joule heat generation. The branching
is triggered by a thermomagnetic edge instability which causes stratification
of the critical state. The resulting distribution of magnetic microavalanches
depends on a spatial distribution of defects. Our results are in good agreement
with experiments performed on Nb films.Comment: 4 pages, 3 figures, see http://mti.msd.anl.gov/aran_h1.htm for
extensive collection of movies of dendritic flux and temperature pattern
Vortex avalanches and magnetic flux fragmentation in superconductors
We report results of numerical simulations of non isothermal dendritic flux
penetration in type-II superconductors. We propose a generic mechanism of
dynamic branching of a propagating hotspot of a flux flow/normal state
triggered by a local heat pulse. The branching occurs when the flux hotspot
reflects from inhomogeneities or the boundary on which magnetization currents
either vanish, or change direction. Then the hotspot undergoes a cascade of
successive splittings, giving rise to a dissipative dendritic-type flux
structure. This dynamic state eventually cools down, turning into a frozen
multi-filamentary pattern of magnetization currents.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let
Superconductivity in La₂Ni₂In
We report here the properties of single crystals of La2Ni2In. Electrical resistivity and specific heat measurements concur with the results of density functional theory calculations, finding that La2Ni2In is a weakly correlated metal, where the Ni magnetism is almost completely quenched, leaving only a weak Stoner enhancement of the density of states. Superconductivity is observed at temperatures below 0.9 K. A detailed analysis of the field and temperature dependencies of the resistivity, magnetic susceptibility, and specific heat at the lowest temperatures reveals that La2Ni2In is a dirty type-II superconductor with likely s-wave gap symmetry. Nanoclusters of ferromagnetic inclusions significantly affect the subgap states resulting in a nonexponential temperature dependence of the specific heat C(T) at T ≪ Tc
Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy
SrTiO3 ceramics are investigated by piezoresponse force microscopy.
Piezoelectric contrast is observed on polished surfaces in both vertical and
lateral regimes and depends on the grain orientation varying in both sign
(polarization direction) and amplitude. The observed contrast is attested to
the surface piezoelectricity due to flexoelectric effect (strain
gradient-induced polarization) caused by the surface relaxation. The estimated
flexoelectric coefficient is approximately one order of magnitude smaller as
compared to those recently measured in SrTiO3 single crystals. The observed
enhancement of piezoresponse signal at the grain boundaries is explained by the
dipole moments associated with inhomogeneous distribution of oxygen vacancies
Manin matrices and Talalaev's formula
We study special class of matrices with noncommutative entries and
demonstrate their various applications in integrable systems theory. They
appeared in Yu. Manin's works in 87-92 as linear homomorphisms between
polynomial rings; more explicitly they read: 1) elements in the same column
commute; 2) commutators of the cross terms are equal: (e.g. ). We claim
that such matrices behave almost as well as matrices with commutative elements.
Namely theorems of linear algebra (e.g., a natural definition of the
determinant, the Cayley-Hamilton theorem, the Newton identities and so on and
so forth) holds true for them.
On the other hand, we remark that such matrices are somewhat ubiquitous in
the theory of quantum integrability. For instance, Manin matrices (and their
q-analogs) include matrices satisfying the Yang-Baxter relation "RTT=TTR" and
the so--called Cartier-Foata matrices. Also, they enter Talalaev's
hep-th/0404153 remarkable formulas: ,
det(1-e^{-\p}T_{Yangian}(z)) for the "quantum spectral curve", etc. We show
that theorems of linear algebra, after being established for such matrices,
have various applications to quantum integrable systems and Lie algebras, e.g
in the construction of new generators in (and, in general,
in the construction of quantum conservation laws), in the
Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We also
discuss applications to the separation of variables problem, new Capelli
identities and the Langlands correspondence.Comment: 40 pages, V2: exposition reorganized, some proofs added, misprints
e.g. in Newton id-s fixed, normal ordering convention turned to standard one,
refs. adde
Synthesis, Self-Assembly and In Vitro Cellular Uptake Kinetics of Nanosized Drug Carriers Based on Aggregates of Amphiphilic Oligomers of N-Vinyl-2-pyrrolidone
Development of nanocarrier-based drug delivery systems is a major breakthrough in pharmacology, promising targeted delivery and reduction in drug toxicity. On the cellular level, encapsulation of a drug substantially affects the endocytic processes due to nanocarrier–membrane interaction. In this study we synthesized and characterized nanocarriers assembled from amphiphilic oligomers of N-vinyl-2-pyrrolidone with a terminal thiooctadecyl group (PVP-OD). It was found that the dissolution free energy of PVP-OD depends linearly on the molecular mass of its hydrophilic part up to [Formula: see text] = 2 × 10(4), leading to an exponential dependence of critical aggregation concentration (CAC) on the molar mass. A model hydrophobic compound (DiI dye) was loaded into the nanocarriers and exhibited slow release into the aqueous phase on a scale of 18 h. Cellular uptake of the loaded nanocarriers and that of free DiI were compared in vitro using glioblastoma (U87) and fibroblast (CRL2429) cells. While the uptake of both DiI/PVP-OD nanocarriers and free DiI was inhibited by dynasore, indicating a dynamin-dependent endocytic pathway as a major mechanism, a decrease in the uptake rate of free DiI was observed in the presence of wortmannin. This suggests that while macropinocytosis plays a role in the uptake of low-molecular components, this pathway might be circumvented by incorporation of DiI into nanocarriers
Memory Reduction via Delayed Simulation
We address a central (and classical) issue in the theory of infinite games:
the reduction of the memory size that is needed to implement winning strategies
in regular infinite games (i.e., controllers that ensure correct behavior
against actions of the environment, when the specification is a regular
omega-language). We propose an approach which attacks this problem before the
construction of a strategy, by first reducing the game graph that is obtained
from the specification. For the cases of specifications represented by
"request-response"-requirements and general "fairness" conditions, we show that
an exponential gain in the size of memory is possible.Comment: In Proceedings iWIGP 2011, arXiv:1102.374
Association of BMI, lipid-lowering medication, and age with prevalence of type 2 diabetes in adults with heterozygous familial hypercholesterolaemia: a worldwide cross-sectional study
Background: Statins are the cornerstone treatment for patients with heterozygous familial hypercholesterolaemia but research suggests it could increase the risk of type 2 diabetes in the general population. A low prevalence of type 2 diabetes was reported in some familial hypercholesterolaemia cohorts, raising the question of whether these patients are protected against type 2 diabetes. Obesity is a well known risk factor for the development of type 2 diabetes. We aimed to investigate the associations of known key determinants of type 2 diabetes with its prevalence in people with heterozygous familial hypercholesterolaemia. Methods: This worldwide cross-sectional study used individual-level data from the EAS FHSC registry and included adults older than 18 years with a clinical or genetic diagnosis of heterozygous familial hypercholesterolaemia who had data available on age, BMI, and diabetes status. Those with known or suspected homozygous familial hypercholesterolaemia and type 1 diabetes were excluded. The main outcome was prevalence of type 2 diabetes overall and by WHO region, and in relation to obesity (BMI ≥30·0 kg/m2) and lipid-lowering medication as predictors. The study population was divided into 12 risk categories based on age (tertiles), obesity, and receiving statins, and the risk of type 2 diabetes was investigated using logistic regression. Findings: Among 46 683 adults with individual-level data in the FHSC registry, 24 784 with heterozygous familial hypercholesterolaemia were included in the analysis from 44 countries. 19 818 (80%) had a genetically confirmed diagnosis of heterozygous familial hypercholesterolaemia. Type 2 diabetes prevalence in the total population was 5·7% (1415 of 24 784), with 4·1% (817 of 19 818) in the genetically diagnosed cohort. Higher prevalence of type 2 diabetes was observed in the Eastern Mediterranean (58 [29·9%] of 194), South-East Asia and Western Pacific (214 [12·0%] of 1785), and the Americas (166 [8·5%] of 1955) than in Europe (excluding the Netherlands; 527 [8·0%] of 6579). Advancing age, a higher BMI category (obesity and overweight), and use of lipid-lowering medication were associated with a higher risk of type 2 diabetes, independent of sex and LDL cholesterol. Among the 12 risk categories, the probability of developing type 2 diabetes was higher in people in the highest risk category (aged 55–98 years, with obesity, and receiving statins; OR 74·42 [95% CI 47·04–117·73]) than in those in the lowest risk category (aged 18–38 years, without obesity, and not receiving statins). Those who did not have obesity, even if they were in the upper age tertile and receiving statins, had lower risk of type 2 diabetes (OR 24·42 [15·57–38·31]). The corresponding results in the genetically diagnosed cohort were OR 65·04 (40·67–104·02) for those with obesity in the highest risk category and OR 20·07 (12·73–31·65) for those without obesity. Interpretation: Adults with heterozygous familial hypercholesterolaemia in most WHO regions have a higher type 2 diabetes prevalence than in Europe. Obesity markedly increases the risk of diabetes associated with age and use of statins in these patients. Our results suggest that heterozygous familial hypercholesterolaemia does not protect against type 2 diabetes, hence managing obesity is essential to reduce type 2 diabetes in this patient population. Funding: Pfizer, Amgen, MSD, Sanofi-Aventis, Daiichi-Sankyo, and Regeneron
- …
