4,448 research outputs found
A note on color neutrality in NJL-type models
By referring to the underlying physics behind the color charge neutrality
condition in quark matter, we discuss how this condition should be properly
imposed in NJL-type models in a phenomenologically meaningful way. In
particular, we show that the standard assumption regarding the use of two color
chemical potentials, chosen in a very special way, is not justified in general.
When used uncritically, such an approach leads to wrong or unphysical
conclusions.Comment: 4 pages, no figure; v2: minor clarifications, references adde
Backflow and dissipation during the quantum decay of a metastable Fermi liquid
The particle current in a metastable Fermi liquid against a first-order phase
transition is calculated at zero temperature. During fluctuations of a droplet
of the stable phase, in accordance with the conservation law, not only does an
unperturbed current arise from the continuity at the boundary, but a backflow
is induced by the density response. Quasiparticles carrying these currents are
scattered by the boundary, yielding a dissipative backflow around the droplet.
An energy of the hydrodynamic mass flow of the liquid and a friction force
exerted on the droplet by the quasiparticles have been obtained in terms of a
potential of their interaction with the droplet.Comment: 5 pages (REVTeX), to be published in Phys. Rev.
Single domain YBCO/Ag bulk superconductors fabricated by seeded infiltration and growth
We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, Jc, of over 70 kA/cm2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of Jc throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter × 7 mm thickness)
Surface tension in a compressible liquid-drop model: Effects on nuclear density and neutron skin thickness
We examine whether or not the surface tension acts to increase the nucleon
density in the nuclear interior within a compressible liquid-drop model. We
find that it depends on the density dependence of the surface tension, which
may in turn be deduced from the neutron skin thickness of stable nuclei.Comment: 4 pages, 1 figure, to be published in Physical Review
Doping and critical-temperature dependence of the energy gaps in Ba(Fe_{1-x}Co_x)_2As_2 thin films
The dependence of the superconducting gaps in epitaxial
Ba(Fe_{1-x}Co_{x})_2As_2 thin films on the nominal doping x (0.04 \leq x \leq
0.15) was studied by means of point-contact Andreev-reflection spectroscopy.
The normalized conductance curves were well fitted by using the 2D
Blonder-Tinkham-Klapwijk model with two nodeless, isotropic gaps -- although
the possible presence of gap anisotropies cannot be completely excluded. The
amplitudes of the two gaps \Delta_{S} and \Delta_{L} show similar monotonic
trends as a function of the local critical temperature T_{c}^{A} (measured in
the same point contacts) from 25 K down to 8 K. The dependence of the gaps on x
is well correlated to the trend of the critical temperature, i.e. to the shape
of the superconducting region in the phase diagram. When analyzed within a
simple three-band Eliashberg model, this trend turns out to be compatible with
a mechanism of superconducting coupling mediated by spin fluctuations, whose
characteristic energy scales with T_{c} according to the empirical law
\Omega_{0}= 4.65*k_{B}*T_{c}, and with a total electron-boson coupling strength
\lambda_{tot}= 2.22 for x \leq 0.10 (i.e. up to optimal doping) that slightly
decreases to \lambda_{tot}= 1.82 in the overdoped samples (x = 0.15).Comment: 8 pages, 5 color figure
Melting Pattern of Diquark Condensates in Quark Matter
Thermal color superconducting phase transitions in high density three-flavor
quark matter are investigated in the Ginzburg-Landau approach. Effects of
nonzero strange quark mass, electric and color charge neutrality, and direct
instantons are considered. Weak coupling calculations show that an interplay
between the mass and electric neutrality effects near the critical temperature
gives rise to three successive second-order phase transitions as the
temperature increases: a modified color-flavor locked (mCFL) phase (ud, ds, and
us pairings) -> a ``dSC'' phase (ud and ds pairings) -> an isoscalar pairing
phase (ud pairing) -> a normal phase (no pairing). The dSC phase is novel in
the sense that while all eight gluons are massive as in the mCFL phase, three
out of nine quark quasiparticles are gapless.Comment: minor changes in the text, fig.2 modifie
Electron screening in the liquid-gas mixed phases of nuclear matter
Screening effects of electrons on inhomogeneous nuclear matter, which
includes spherical, slablike, and rodlike nuclei as well as spherical and
rodlike nuclear bubbles, are investigated in view of possible application to
cold neutron star matter and supernova matter at subnuclear densities. Using a
compressible liquid-drop model incorporating uncertainties in the surface
tension, we find that the energy change due to the screening effects broadens
the density region in which bubbles and nonspherical nuclei appear in the phase
diagram delineating the energetically favorable shape of inhomogeneous nuclear
matter. This conclusion is considered to be general since it stems from a
model-independent feature that the electron screening acts to decrease the
density at which spherical nuclei become unstable against fission and to
increase the density at which uniform matter becomes unstable against proton
clustering.Comment: 12 pages, 8 figures, accepted for publication in Physical Review
Curvature effect on nuclear pasta: Is it helpful for gyroid appearance?
In supernova cores and neutron star crusts, nuclei are thought to deform to
rodlike and slablike shapes, which are often called nuclear pasta. We study the
equilibrium properties of the nuclear pasta by using a liquid drop model with
curvature corrections. It is confirmed that the curvature effect acts to lower
the transition densities between different shapes. We also examine the gyroid
structure, which was recently suggested as a different type of nuclear pasta by
analogy with the polymer systems. The gyroid structure investigated in this
paper is approximately formulated as an extension of the periodic minimal
surface whose mean curvature vanishes. In contrast to our expectations, we find
from the present approximate formulation that the curvature corrections act to
slightly disfavor the appearance of the gyroid structure. By comparing the
energy corrections in the gyroid phase and the hypothetical phases composed of
d-dimensional spheres, where d is a general dimensionality, we show that the
gyroid is unlikely to belong to a family of the generalized dimensional
spheres.Comment: 14 pages, 8 figure
Spin-Down of Neutron Stars and Compositional Transitions in the Cold Crustal Matter
Transitions of nuclear compositions in the crust of a neutron star induced by
stellar spin-down are evaluated at zero temperature. We construct a
compressible liquid-drop model for the energy of nuclei immersed in a neutron
gas, including pairing and shell correction terms, in reference to the known
properties of the ground state of matter above neutron drip density, . Recent experimental values and extrapolations of
nuclear masses are used for a description of matter at densities below neutron
drip. Changes in the pressure of matter in the crust due to the stellar
spin-down are calculated by taking into account the structure of the crust of a
slowly and uniformly rotating relativistic neutron star. If the initial
rotation period is ms, these changes cause nuclei, initially being in
the ground-state matter above a mass density of about , to absorb neutrons in the equatorial region where the matter
undergoes compression, and to emit them in the vicinity of the rotation axis
where the matter undergoes decompression. Heat generation by these processes is
found to have significant effects on the thermal evolution of old neutron stars
with low magnetic fields; the surface emission predicted from this heating is
compared with the observations of X-ray emission from millisecond
pulsars and is shown to be insufficient to explain the observed X-ray
luminosities.Comment: 32 pages, LaTeX, 11 Postscript figures. Accepted for publication in
Ap
- …
