1,940 research outputs found

    Microwave Penetration Depth and Quasiparticle Conductivity in PrFeAsO_1-y Single Crystals : Evidence for a Full-Gap Superconductor

    Full text link
    In-plane microwave penetration depth λab\lambda_{ab} and quaiparticle conductivity at 28 GHz are measured in underdoped single crystals of the Fe-based superconductor PrFeAsO1y_{1-y} (Tc35T_c\approx 35 K) by using a sensitive superconducting cavity resonator. λab(T)\lambda_{ab}(T) shows flat dependence at low temperatures, which is incompatible with the presence of nodes in the superconducting gap Δ(k)\Delta({\bf k}). The temperature dependence of the superfluid density demonstrates that the gap is non-zero (Δ/kBTc1.6\Delta/k_BT_c\gtrsim 1.6) all over the Fermi surface. The microwave conductivity below TcT_c exhibits an enhancement larger than the coherence peak, reminiscent of high-TcT_c cuprate superconductors.Comment: 4 pages, 3 figures. Version accepted for publication in Phys. Rev. Lett. For related results of hole-doped 122 system, see arXiv:0810.350

    Dielectric Properties of Ethanolamines

    Get PDF

    Line nodes in the energy gap of high-temperature superconducting BaFe_2(As_{1-x}P_x)_2 from penetration depth and thermal conductivity measurements

    Full text link
    We report magnetic penetration depth and thermal conductivity data for high-quality single crystals of BaFe2_2(As1x_{1-x}Px_{x})2_2 (Tc=30T_c=30\,K) which provide strong evidence that this material has line nodes in its energy gap. This is distinctly different from the nodeless gap found for (Ba,K)Fe2_2As2_2 which has similar TcT_c and phase diagram. Our results indicate that repulsive electronic interactions play an essential role for Fe-based high-TcT_c superconductivity but that uniquely there are distinctly different pairing states, with and without nodes, which have comparable TcT_c.Comment: 4 pages, 3 figures, revised version to be published in Phys. Rev. B Rapid Communicatio

    Microwave Surface-Impedance Measurements of the Magnetic Penetration Depth in Single Crystal Ba1-xKxFe2As2 Superconductors: Evidence for a Disorder-Dependent Superfluid Density

    Full text link
    We report high-sensitivity microwave measurements of the in-plane penetration depth λab\lambda_{ab} and quasiparticle scattering rate 1/τ1/\tau in several single crystals of hole-doped Fe-based superconductor Ba1x_{1-x}Kx_xFe2_2As2_2 (x0.55x\approx 0.55). While power-law temperature dependence of λab\lambda_{ab} with the power 2\sim 2 is found in crystals with large 1/τ1/\tau, we observe exponential temperature dependence of superfluid density consistent with the existence of fully opened two gaps in the cleanest crystal we studied. The difference may be a consequence of different level of disorder inherent in the crystals. We also find a linear relation between the low-temperature scattering rate and the density of quasiparticles, which shows a clear contrast to the case of d-wave cuprate superconductors with nodes in the gap. These results demonstrate intrinsically nodeless order parameters in the Fe-arsenides.Comment: 4 pages, 4 figures, 1 table. Accepted for publication in Phys. Rev. Lett. Changed title as suggested by the PRL editor

    Cyclotron Resonance in the Hidden-Order Phase of URu2Si2

    Full text link
    We report the first observation of cyclotron resonance in the hidden-order phase of ultra-clean URu2_2Si2_2 crystals, which allows the full determination of angle-dependent electron-mass structure of the main Fermi-surface sheets. We find an anomalous splitting of the sharpest resonance line under in-plane magnetic-field rotation. This is most naturally explained by the domain formation, which breaks the fourfold rotational symmetry of the underlying tetragonal lattice. The results reveal the emergence of an in-plane mass anisotropy with hot spots along the [110] direction, which can account for the anisotropic in-plane magnetic susceptibility reported recently. This is consistent with the `nematic' Fermi liquid state, in which itinerant electrons have unidirectional correlations.Comment: 5 pages, 3 figure
    corecore