123 research outputs found
Performance analysis of cables with attached tuned-inerter-dampers
Cables are structural elements designed to bear tensile forces and experience vibration problems due to their slenderness and low mass. In the field of civil engineering, they are mostly used in bridges where the vibrations are mainly induced by wind, rain, traffic and earthquakes. This paper proposes the use of a tuned-inerter-damper (TID) system, mounted on cables to suppress unwanted vibrations. These are to be attached transversally to the cable, in the vicinity of the support, connected between the deck and the cable. The potential advantage of using a TID system consists in the high apparent mass that can be produced by the inerter. Our analysis showed that the modal damping ratio obtained is much higher than in the case of traditional dampers or tuned mass dampers, leading to an improved overall response. An optimal tuning methodology is also discussed. Numerical results are shown with a cable subjected to both free and forced vibrations and the TID performance is improved when compared with equivalent dampers
Recommended from our members
Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria
The tuned mass-damper-inerter (TMDI) is a recently proposed linear passive dynamic vibration absorber for the seismic protection of buildings. It couples the classical tuned mass damper (TMD) with an inerter, a two-terminal device resisting the relative acceleration of its terminals, in judicial topologies, achieving mass-amplification and higher-modes-damping effects compared to the TMD. This paper considers an optimum TMDI design framework accommodating the above effects while accounting for parametric uncertainty to the host structure properties, modeled as a linear multi degree of freedom system, and to the seismic excitation, modeled as stationary colored noise. The inerter device constant, acting as a TMD mass amplifier, is treated as a design variable, whereas performance variables sensitive to high-frequency structural response dynamics are used to account for the TMDI influence to the higher structural modes. Reliability criteria are adopted for quantifying the structural performance, expressed through the probability of occurrence of different failure modes related to the trespassing of acceptable thresholds for the adopted performance variables: floor accelerations, interstory drifts, and attached mass displacement. The design objective function is taken as a linear combination of these probabilities following current performance-based seismic design trends. Analytical and simulation-based tools are adopted for the efficient estimation of the underlying stochastic integral defining the structural performance under uncertainty. A 10-story building under stationary Kanai-Tajimi stochastic excitation is considered to illustrate the design framework for various TMDI topologies and attached mass values. It is shown that the TMDI achieves enhanced structural performance and robustness to building and excitation uncertainties compared to same mass/weight TMDs
Recommended from our members
Shake table testing of a tuned mass damper inerter (Tmdi)-equipped structure and nonlinear dynamic modeling under harmonic excitations
This paper presents preliminary experimental results from a novel shaking table testing campaign investigating the dynamic response of a two-degree-of-freedom (2DOF) physical specimen with a grounded inerter under harmonic base excitation and contributes a nonlinear dynamic model capturing the behavior of the test specimen. The latter consists of a primary mass connected to the ground through a high damping rubber isolator (HDRI) and a secondary mass connected to the primary mass through a second HDRI. Further, a flywheel-based rack-and-pinion inerter prototype device is used to connect the secondary mass to the ground. The resulting specimen resembles the tuned mass damper inerter (TMDI) configuration with grounded inerter analytically defined and numerically assessed by the authors in a number of previous publications. Physical specimens with three different inerter coefficients are tested on the shake table under sine-sweep excitation with three different amplitudes. Experimental frequency response functions (FRFs) are derived manifesting a softening nonlinear behavior of the specimens and enhanced vibration suppression with increased inerter coefficient. Further, a 2DOF parametric nonlinear model of the specimen is established accounting for non-ideal inerter device behavior and its potential to characterize experimental response time-histories, FRFs, and force-displacement relationships of the HDRIs and of the inerter is verified
Interaction of Two Adjacent Structures Coupled by Inerter-based System considering Soil Conditions
The inerter-based systems have proven to be effective for vibration control of adjacent structures. The interaction through the soil medium between adjacent structures in urban areas is generally accepted. However, existing studies concerning the inerter-based adjacent structures are primarily based on the assumption of a fixed base, without considering the inevitable interaction. To address this issue, this study incorporated the soil effects into the theoretical analysis of adjacent structures interconnected by an inerter system, and correspondingly develops an optimal design framework for such system. Employing a classic discrete model for structures and soil, the interaction behavior between inerter-based adjacent structures and soil was extensively studied in a comparative analysis. Based on the revealed interaction phenomena, the need for considering the soil condition in the design of an inerter system for adjacent structures was addressed, and a performance-demand-based optimal design framework was developed. The results indicated that for inerter-based adjacent structures spaced closely, the coupled interaction effect of soil and structure requires careful consideration, especially in soft soil conditions. Owing to the soil effects, the inerter system exhibited a weakened effectiveness for displacement reduction. A larger inner deformation of the inerter system is required to meet the demand for energy dissipation. With consideration of the soil condition, the proposed design method can satisfy the pre-specified target displacement demands for adjacent structures, simultaneously optimizing the control cost as an economical solution
Experimental characterization and performance improvement evaluation of an electromagnetic transducer utilizing a tuned inerter
This research reports on the experimental verification of an enhanced energy conversion device utilizing a tuned inerter called a tuned inertial mass electromagnetic transducer (TIMET). The TIMET consists of a motor, a rotational mass, and a tuning spring. The motor and the rotational mass are connected to a ball screw and the tuning spring interfaced to the ball screw is connected to the vibrating structure. Thus, vibration energy of the structure is absorbed as electrical energy by the motor. Moreover, the amplified inertial mass can be realized by rotating relatively small physical masses. Therefore, by designing the tuning spring stiffness and the inertial mass appropriately, the motor can rotate more effectively due to the resonance effect, leading to more effective energy generation. The authors designed a prototype of the TIMET and conducted tests to validate the effectiveness of the tuned inerter for electromagnetic transducers. Through excitation tests, the property of the hysteresis loops produced by the TIMET is investigated. Then a reliable analytical model is developed employing a curve fitting technique to simulate the behavior of the TIMET and to assess the power generation accurately. In addition, numerical simulation studies on a structure subjected to a seismic loading employing the developed model are conducted to show the advantages of the TIMET over a traditional electromagnetic transducer in both vibration suppression capability and energy harvesting efficiency
Energy harvesting potential of tuned inertial mass electromagnetic transducers
The demand for developing renewable energy technologies has been growing in today\u27s society. As one of promising renewable energy sources, large-scale energy harvesting from structural vibrations employing electromagnetic transducers has recently been proposed and considerable effort has been devoted to increase the power generation capability. In this paper, we introduce the mechanism of a tuned inertial mass electromagnetic transducer (TIMET), which can absorb vibratory energy more efficiently by tuning the parameters to adjust the system. Then we propose a new vibratory energy harvester with the TIMET and determine the parameter values for the device with a simple static admittance (SA) control law to maximize the energy harvested from a stationary stochastic disturbance. To investigate the energy harvesting potential of the TIMET further, the performance-guaranteed (PG) control and the LQG control proposed in the literature are applied as well. Then the numerical simulation studies are carried out and the effectiveness of the proposed energy harvester is examined by comparing the traditional electromagnetic transducers
Using an inerter-based device for structural vibration suppression
SUMMARY: This paper proposes the use of a novel type of passive vibration control system to reduce vibrations in civil engineering structures subject to base excitation. The new system is based on the inerter, a device that was initially developed for high-performance suspensions in Formula 1 racing cars. The principal advantage of the inerter is that a high level of vibration isolation can be achieved with low amounts of added mass. This feature makes it an attractive potential alternative to traditional tuned mass dampers (TMDs). In this paper, the inerter system is modelled inside a multi-storey building and is located on braces between adjacent storeys. Numerical results show that an excellent level of vibration reduction is achieved, potentially offering improvement over TMDs. The inerter-based system is compared to a TMD system by using a range of base excitation inputs, including an earthquake signal, to demonstrate how the performance could potentially be improved by using an inerter instead of a TMD. © 2013 John Wiley & Sons, Ltd
- …
