442 research outputs found
Characterization of Ti-Beta zeolites and their reactivity for the photocatalytic reduction of CO_2 with H_2O
A characterization of Ti-Beta zeolites synthesized under various conditions as well as an investigation of their photocatalytic properties for the reduction of CO_2 with H_2O at 323 K to produce CH_4 and CH_3OH were carried out. In situ XAFS spectra measurements indicated that a highly dispersed tetrahedral titanium oxide species was present in the zeolite framework and an increase in the coordination number of the titanium oxide species by the addition of H_2O and CO_2 molecules could be detected. The Ti-Beta zeolite having a hydrophilic property (Ti-Beta(OH)) exhibited a more dramatic increase in the coordination number than the Ti-Beta(F) zeolite which had a hydrophobic property. These results suggest that CO_2 and H_2O molecules can be adsorbed efficiently onto the highly dispersed tetrahedrally coordinated titanium oxide species. UV irradiation of these Ti-Beta zeolite catalysts in the presence of H_2O and CO_2 led to the formation of CH_4 and CH_3OH. Ti-Beta(OH) exhibited a higher reactivity than Ti-Beta(F), while the selectivity for the formation of CH_3OH on Ti-Beta(F) was higher than that for Ti-Beta(OH). These results indicated that the reactivity and selectivity of the zeolite catalyst can be determined by the hydrophilic and hydrophobic properties of the zeolites
Characterization of Ti-Beta zeolites and their reactivity for the photocatalytic reduction of CO_2 with H_2O
A characterization of Ti-Beta zeolites synthesized under various conditions as well as an investigation of their photocatalytic properties for the reduction of CO_2 with H_2O at 323 K to produce CH_4 and CH_3OH were carried out. In situ XAFS spectra measurements indicated that a highly dispersed tetrahedral titanium oxide species was present in the zeolite framework and an increase in the coordination number of the titanium oxide species by the addition of H_2O and CO_2 molecules could be detected. The Ti-Beta zeolite having a hydrophilic property (Ti-Beta(OH)) exhibited a more dramatic increase in the coordination number than the Ti-Beta(F) zeolite which had a hydrophobic property. These results suggest that CO_2 and H_2O molecules can be adsorbed efficiently onto the highly dispersed tetrahedrally coordinated titanium oxide species. UV irradiation of these Ti-Beta zeolite catalysts in the presence of H_2O and CO_2 led to the formation of CH_4 and CH_3OH. Ti-Beta(OH) exhibited a higher reactivity than Ti-Beta(F), while the selectivity for the formation of CH_3OH on Ti-Beta(F) was higher than that for Ti-Beta(OH). These results indicated that the reactivity and selectivity of the zeolite catalyst can be determined by the hydrophilic and hydrophobic properties of the zeolites
Benzonorcorrole Ni^II Complexes : Enhancement of Paratropic Ring Current and Singlet Diradical Character by Benzo-Fusion
Fused benzene rings to antiaromatic compounds generally improve their stability but attenuate their antiaromaticity. The opposite case is now reported. Ni^II benzonorcorroles were synthesized and the effect of benzo‐fusion on the antiaromaticity was elucidated. The benzo‐fusion resulted in significant decrease of the HOMO–LUMO gaps and enhancement of the paratropic ring current effect. Furthermore, the introduction of the benzo groups induced singlet diradical character in the antiaromatic porphyrinoid.ファイル公開:2019-02-19journal articl
Desmoplastic small round cell tumors: Multimodality treatment and new risk factors
BACKGROUND: To evaluate optimal therapy and potential risk factors.
METHODS: Data of DSRCT patients <40 years treated in prospective CWS trials 1997-2015 were analyzed.
RESULTS: Median age of 60 patients was 14.5 years. Male:female ratio was 4:1. Tumors were abdominal/retroperitoneal in 56/60 (93%). 6/60 (10%) presented with a localized mass, 16/60 (27%) regionally disseminated nodes, and 38/60 (63%) with extraperitoneal metastases. At diagnosis, 23/60 (38%) patients had effusions, 4/60 (7%) a thrombosis, and 37/54 (69%) elevated CRP. 40/60 (67%) patients underwent tumor resection, 21/60 (35%) macroscopically complete. 37/60 (62%) received chemotherapy according to CEVAIE (ifosfamide, vincristine, actinomycin D, carboplatin, epirubicin, etoposide), 15/60 (25%) VAIA (ifosfamide, vincristine, adriamycin, actinomycin D) and, 5/60 (8%) P6 (cyclophosphamide, doxorubicin, vincristine, ifosfamide, etoposide). Nine received high-dose chemotherapy, 6 received regional hyperthermia, and 20 received radiotherapy. Among 25 patients achieving complete remission, 18 (72%) received metronomic therapies. Three-year event-free (EFS) and overall survival (OS) were 11% (±8 confidence interval [CI] 95%) and 30% (±12 CI 95%), respectively, for all patients and 26.7% (±18.0 CI 95%) and 56.9% (±20.4 CI 95%) for 25 patients achieving remission. Extra-abdominal site, localized disease, no effusion or ascites only, absence of thrombosis, normal CRP, complete tumor resection, and chemotherapy with VAIA correlated with EFS in univariate analysis. In multivariate analysis, significant factors were no thrombosis and chemotherapy with VAIA. In patients achieving complete remission, metronomic therapy with cyclophosphamide/vinblastine correlated with prolonged time to relapse.
CONCLUSION: Pleural effusions, venous thrombosis, and CRP elevation were identified as potential risk factors. The VAIA scheme showed best outcome. Maintenance therapy should be investigated further
Photocatalytic Activity for Hydrogen Evolution of Heteroatom-Doped SrTiO3 Prepared Using a Graphitic-Carbon Nitride Nanosheet
We developed a novel method to synthesize a visible-light-responsible photocatalyst from a composite of SrTiO3 and a graphitic carbon nitride (g-C3N4) nanosheet. Heteroatoms were successfully doped into a lattice of SrTiO3 by mild calcination of a composite that the g-C3N4 nanosheet adsorbed on to the SrTiO3 surface. The absorption edge in the UV-Vis absorption spectrum of the doped sample was shifted to a longer wavelength region. The photocatalytic activity of the doped sample under UV light irradiation was higher than those of both pristine SrTiO3 and the g-C3N4 nanosheet, suggesting that the photocatalytic property of SrTiO3 was enhanced by doping. The doped sample showed photocatalytic activity under visible light irradiation (>420 nm), which was enhanced by Pt loading
Elucidation of the local structure of active titanium(iv) sites on silica-based phase-boundary catalysts for alkene epoxidation with aqueous hydrogen peroxide
Structural and functional aspects of active titanium sites for phase boundary catalytic (PBC) epoxidation of 1-octene with hydrogen peroxide (H2O2) were investigated in detail using X-ray absorption fine structure (XAFS) analysis and ultraviolet and visible-light diffuse reflectance (UV-Vis-DR) spectroscopy. By analysis of the Ti K-edge X-ray absorption near edge fine structure (XANES) spectra of several titanium-loaded silica catalysts, the ratio of the amount of 4-coordinated titanium oxide (Ttet) to that of a 6-coordinated one (Toct) was determined. Monotonic increments of catalytic activity for epoxide production and efficiency of H2O2 utilization with the ratio Ttet/(Ttet + Toct) revealed that the highly active catalysts mainly include Ttet but not Toct. UV-Vis-DR spectra of samples with external surfaces partially covered with alkylsilyl groups indicated that there are at least two kinds of Ttet sites with different ligands. One site anchors an acidic hydroxyl (Ttet(OH)), giving absorption centered at the wavelength of ca. 230 nm and the other, exhibiting an absorption peak at the wavelength of ca. 210 nm, is directly attached to an alkylsilyl group (Ttet(OSiR)) formed via reaction of an acidic hydroxy of Ttet(OH) with an alkylsilane reagent. Since the catalysts have both an alkylsilyl-grafted hydrophobic surface and a hydroxy-terminated hydrophilic surface, it is postulated that the former is located on both hydrophilic (Ttet(OH,w)) and hydrophobic (Ttet(OH,o)) surfaces and the latter, Ttet(OSiR), exists only on the hydrophobic surface. From analyses of catalytic activities of several catalysts with different distributions of these Ttet sites, both Ttet(OH,o) and Ttet(OSiR) sites on the hydrophobic surface were proved to be active, while Ttet(OH,w) on the hydrophilic surface did not work for the present PBC system. Among the sites on the hydrophobic surface, moreover, it was found that a Ttet(OSiR) site acted as a more effective site for selective epoxidation when compared with Ttet(OH,o), which induced ring-opening of epoxide to give a by-product, 1,2-octanediol
Asymmetrically modified titanium(IV) oxide particles having both hydrophobic and hydrophilic parts of their surfaces for liquid–liquid dual-phase photocatalytic reactions
Titanium(IV) oxide (TiO2)-based photocatalyst particles assembled at the phase boundary of a liquid–liquid dual-phase mixture were prepared by partial modification of the external surface of each particle with alkylsilyl groups. The average surface coverage of alkylsilyl groups was estimated by elemental analyses of carbon and ash components of the samples and floatability on aqueous ethanol solutions. Results revealed that the hydrophobicity–hydrophilicity of asymmetrically modified samples was comparable to that of samples fully covered with alkylsilyl groups. TiO2 particles asymmetrically or fully modified with alkylsilyl groups showed photocatalytic activity for benzene oxidation to produce phenol from an aerated benzene–water dual-phase mixture even without agitation, while bare TiO2 required mechanical agitation to induce the photocatalytic reaction. However, prolonged irradiation precipitated some of the surface-modified particles in the aqueous layer due to photocatalytic decomposition of surface alkylsilyl groups. The photostability was improved by employment of TiO2 particles coated with porous silica (SiO2) as a starting material. Compared with the SiO2-coated TiO2 particles fully modified with alkylsilyl groups (o-Si/Ti), the asymmetrically modified SiO2–TiO2 particles (w/o-Si/Ti) showed slightly higher photocatalytic activity for benzene oxidation. On the other hand, a notable difference between the two types of particles was observed in photocatalytic hydrogen evolution in the presence of sacrificial donors from a benzene–water mixture and from an aqueous solution under deaerated conditions; w/o-Si/Ti showed the activity more than two-fold greater than that of o-Ti/Si, presumably because of efficient contact of w/o-Si/Ti with both aqueous and organic phases compared with o-Si/Ti, which was rather difficult to contact with the aqueous phase
- …
