2,662 research outputs found
Theoretical Studies of Accretion of Matter onto White Dwarfs and the Single Degenerate Scenario for Supernovae of Type Ia
We present a brief summary of the Single Degenerate Scenario for the
progenitors of Type Ia Supernovae in which it is assumed that a low mass
carbon-oxygen white dwarf is growing in mass as a result of accretion from a
secondary star in a close binary system. Recent hydrodynamic simulations of
accretion of solar material onto white dwarfs without mixing always produce a
thermonuclear runaway and steady burning does not occur. For a broad range in
WD mass (0.4 Solar masses to 1.35 Solar Masses), the maximum ejected material
occurs for the 1.25 Solar Mass sequences and then decreases as the white dwarf
mass decreases. Therefore, the white dwarfs are growing in mass as a
consequence of the accretion of solar material and as long as there is no
mixing of accreted material with core material. In contrast, a thermonuclear
runaway in the accreted hydrogen-rich layers on the low luminosity WDs in close
binary systems where mixing of core matter with accreted material has occurred
is the outburst mechanism for Classical, Recurrent, and Symbiotic novae. The
differences in characteristics of these systems is likely the WD mass and mass
accretion rate. The high levels of enrichment of CN ejecta in elements ranging
from carbon to sulfur confirm that there is dredge-up of matter from the core
of the WD and enable them to contribute to the chemical enrichment of the
interstellar medium. Therefore, studies of CNe can lead to an improved
understanding of Galactic nucleosynthesis, some sources of pre-solar grains,
and the Extragalactic distance scale. The characteristics of the outburst
depend on the white dwarf mass, luminosity, mass accretion rate, and the
chemical composition of both the accreting material and WD material. The
properties of the outburst also depends on when, how, and if the accreted
layers are mixed with the WD core and the mixing mechanism is still unknown.Comment: 25 Pages, Bulletin of the Astronomical Society of India (BASI) in
pres
Experimental evidence of a natural parity state in Mg and its impact to the production of neutrons for the s process
We have studied natural parity states in Mg via the
Ne(Li,d)Mg reaction. Our method significantly improves the
energy resolution of previous experiments and, as a result, we report the
observation of a natural parity state in Mg. Possible spin-parity
assignments are suggested on the basis of published -ray decay
experiments. The stellar rate of the Ne(,)Mg
reaction is reduced and may give rise to an increase in the production of
s-process neutrons via the Ne(,n)Mg reaction.Comment: Published in PR
An Approximation for the rp-Process
Hot (explosive) hydrogen burning or the Rapid Proton Capture Process
(rp-process) occurs in a number of astrophysical environments. Novae and X-ray
bursts are the most prominent ones, but accretion disks around black holes and
other sites are candidates as well. The expensive and often multidimensional
hydro calculations for such events require an accurate prediction of the
thermonuclear energy generation, while avoiding full nucleosynthesis network
calculations. In the present investigation we present an approximation scheme
applicable in a temperature range which covers the whole range of all presently
known astrophysical sites. It is based on the concept of slowly varying
hydrogen and helium abundances and assumes a kind of local steady flow by
requiring that all reactions entering and leaving a nucleus add up to a zero
flux. This scheme can adapt itself automatically and covers situations at low
temperatures, characterized by a steady flow of reactions, as well as high
temperature regimes where a -equilibrium is established.
In addition to a gain of a factor of 15 in computational speed over a full
network calculation, and an energy generation accurate to more than 15 %, this
scheme also allows to predict correctly individual isotopic abundances. Thus,
it delivers all features of a full network at a highly reduced cost and can
easily be implemented in hydro calculations.Comment: 18 pages, LaTeX using astrobib and aas2pp4, includes PostScript
figures; Astrophysical Journal, in press. PostScript source also available at
http://quasar.physik.unibas.ch/preps.htm
Measurement of the 18Ne(a,p_0)21Na reaction cross section in the burning energy region for X-ray bursts
The 18Ne(a,p)21Na reaction provides one of the main HCNO-breakout routes into
the rp-process in X-ray bursts. The 18Ne(a,p_0)21Na reaction cross section has
been determined for the first time in the Gamow energy region for peak
temperatures T=2GK by measuring its time-reversal reaction 21Na(p,a)18Ne in
inverse kinematics. The astrophysical rate for ground-state to ground-state
transitions was found to be a factor of 2 lower than Hauser-Feshbach
theoretical predictions. Our reduced rate will affect the physical conditions
under which breakout from the HCNO cycles occurs via the 18Ne(a,p)21Na
reaction.Comment: 5 pages, 3 figures, accepted for publication on Physical Review
Letter
Production of 26Al in stellar hydrogen-burning environments: spectroscopic properties of states in 27Si
Model predictions of the amount of the radioisotope 26Al produced in
hydrogen-burning environments require reliable estimates of the thermonuclear
rates for the 26gAl(p,{\gamma})27Si and 26mAl(p,{\gamma})27Si reactions. These
rates depend upon the spectroscopic properties of states in 27Si within about 1
MeV of the 26gAl+p threshold (Sp = 7463 keV). We have studied the
28Si(3He,{\alpha})27Si reaction at 25 MeV using a high-resolution
quadrupole-dipole-dipole-dipole magnetic spectrograph. For the first time with
a transfer reaction, we have constrained J{\pi} values for states in 27Si over
Ex = 7.0 - 8.1 MeV through angular distribution measurements. Aside from a few
important cases, we generally confirm the energies and spin-parity assignments
reported in a recent {\gamma}-ray spectroscopy study. The magnitudes of neutron
spectroscopic factors determined from shell-model calculations are in
reasonable agreement with our experimental values extracted using this
reaction.Comment: accepted for publication in Phys. Rev.
Rubidium, zirconium, and lithium production in intermediate-mass asymptotic giant branch stars
A recent survey of a large sample of Galactic intermediate-mass (>3 Msun)
asymptotic giant branch (AGB) stars shows that they exhibit large
overabundances of rubidium (Rb) up to 100--1000 times solar. These observations
set constraints on our theoretical notion of the slow neutron capture process
(s process) that occurs inside intermediate-mass AGB stars. Lithium (Li)
abundances are also reported for these stars. In intermediate-mass AGB stars,
Li can be produced by proton captures occuring at the base of the convective
envelope. For this reason the observations of Rb, Zr, and Li set complementary
constraints on different processes occurring in the same stars. We present
predictions for the abundances of Rb, Zr, and Li as computed for the first time
simultaneously in intermediate-mass AGB star models and compare them to the
current observational constraints. We find that the Rb abundance increases with
increasing stellar mass, as is inferred from observations but we are unable to
match the highest observed [Rb/Fe] abundances. Inclusion of a partial mixing
zone (PMZ) to activate the 13C(a,n)16O reaction as an additional neutron source
yields significant enhancements in the Rb abundance. However this leads to Zr
abundances that exceed the upper limits of the current observational
constraints. If the third dredge-up (TDU) efficiency remains as high during the
final stages of AGB evolution as during the earlier stages, we can match the
lowest values of the observed Rb abundance range. We predict large variations
in the Li abundance, which are observed. Finally, the predicted Rb production
increases with decreasing metallicity, in qualitative agreement with
observations of Magellanic Cloud AGB stars. However stellar models of Z=0.008
and Z=0.004 intermediate-mass AGB stars do not produce enough Rb to match the
observed abundances.Comment: 11 pages, 7 figures, accepted for publication on Astronomy &
Astrophysic
The 106Cd(α, α)106Cd elastic scattering in a wide energy range for γ process studies
Date of Acceptance: 15/04/2015Alpha elastic scattering angular distributions of the 106Cd(α, α)106Cd reaction were measured at three energies around the Coulomb barrier to provide a sensitive test for the α + nucleus optical potential parameter sets. Furthermore, the new high precision angular distributions, together with the data available from the literature were used to study the energy dependence of the locally optimized α + nucleus optical potential in a wide energy region ranging from ELab=27.0MeV down to 16.1 MeV.The potentials under study are a basic prerequisite for the prediction of α-induced reaction cross sections and thus, for the calculation of stellar reaction rates used for the astrophysical γ process. Therefore, statistical model predictions using as input the optical potentials discussed in the present work are compared to the available 106Cd + alpha cross section data.Peer reviewe
Measurement of 25Mg(p; gamma)26Al resonance strengths via gamma spectrometry
The COMPTEL instrument performed the first mapping of the 1.809 MeV photons
in the Galaxy, triggering considerable interest in determing the sources of
interstellar 26Al. The predicted 26Al is too low compared to the observation,
for a better understanding more accurate rates for the 25Mg(p; gamma)26Al
reaction are required. The 25Mg(p;gamma)26Al reaction has been investigated at
the resonances at Er= 745; 418; 374; 304 keV at Ruhr-Universitat-Bochum using a
Tandem accelerator and a 4piNaI detector. In addition the resonance at Er = 189
keV has been measured deep underground laboratory at Laboratori Nazionali del
Gran Sasso, exploiting the strong suppression of cosmic background. This low
resonance has been studied with the 400 kV LUNA accelerator and a HPGe
detector. The preliminary results of the resonance strengths will be reported.Comment: Accepted for publication in Journal of Physics
Direct measurement of resonance strengths in S 34 (α,γ) Ar 38 at astrophysically relevant energies using the DRAGON recoil separator
Background: Nucleosynthesis of mid-mass elements is thought to occur under hot and explosive astrophysical conditions. Radiative α capture on S34 has been shown to impact nucleosynthesis in several such conditions, including core and shell oxygen burning, explosive oxygen burning, and type Ia supernovae. Purpose: Broad uncertainties exist in the literature for the strengths of three resonances within the astrophysically relevant energy range (ECM=1.94-3.42MeV at T=2.2GK). Further, there are several states in Ar38 within this energy range which have not been previously measured. This work aimed to remeasure the resonance strengths of states for which broad uncertainty existed as well as to measure the resonance strengths and energies of previously unmeasured states. Methods: Resonance strengths and energies of eight narrow resonances (five of which had not been previously studied) were measured in inverse kinematics with the DRAGON facility at TRIUMF by impinging an isotopically pure beam of S34 ions on a windowless He4 gas target. Prompt γ emissions of de-exciting Ar38 recoils were detected in an array of bismuth germanate scintillators in coincidence with recoil nuclei, which were separated from unreacted beam ions by an electromagnetic mass separator and detected by a time-of-flight system and a multianode ionization chamber. Results: The present measurements agree with previous results. Broad uncertainty in the resonance strength of the ECM=2709keV resonance persists. Resonance strengths and energies were determined for five low-energy resonances which had not been studied previously, and their strengths were determined to be significantly weaker than those of previously measured resonances. Conclusions: The five previously unmeasured resonances were found not to contribute significantly to the total thermonuclear reaction rate. A median total thermonuclear reaction rate calculated using data from the present work along with existing literature values using the STARLIB rate calculator agrees with the NON-SMOKER statistical model calculation as well as the REACLIB and STARLIB library rates at explosive and nonexplosive oxygen-burning temperatures (T=3-4GK and T=1.5-2.7GK, respectively)
Nuclear uncertainties in the NeNa-MgAl cycles and production of 22Na and 26Al during nova outbursts
Classical novae eject significant amounts of nuclear processed material into
the interstellar medium. Among the isotopes synthesized during such explosions,
two radioactive nuclei deserve a particular attention: 22Na and 26Al. In this
paper, we investigate the nuclear paths leading to 22Na and 26Al production
during nova outbursts by means of an implicit, hydrodynamic code that follows
the course of the thermonuclear runaway from the onset of accretion up to the
ejection stage. New evolutionary sequences of ONe novae have been computed,
using updated nuclear reaction rates relevant to 22Na and 26Al production.
Special attention is focused on the role played by nuclear uncertainties within
the NeNa and MgAl cycles in the synthesis of such radioactive species. From the
series of hydrodynamic models, which assume upper, recommended or lower
estimates of the reaction rates, we derive limits on the production of both
22Na and 26Al. We outline a list of nuclear reactions which deserve new
experimental investigations in order to reduce the wide dispersion introduced
by nuclear uncertainties in the 22Na and 26Al yields.Comment: 46 pages, 4 figures. Accepted for publication in The Astrophysical
Journa
- …
