75 research outputs found
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Coding and regulatory variants are associated with serum protein levels and disease.
Circulating proteins can be used to diagnose and predict disease-related outcomes. A deep serum proteome survey recently revealed close associations between serum protein networks and common disease. In the current study, 54,469 low-frequency and common exome-array variants were compared to 4782 protein measurements in the serum of 5343 individuals from the AGES Reykjavik cohort. This analysis identifies a large number of serum proteins with genetic signatures overlapping those of many diseases. More specifically, using a study-wide significance threshold, we find that 2021 independent exome array variants are associated with serum levels of 1942 proteins. These variants reside in genetic loci shared by hundreds of complex disease traits, highlighting serum proteins' emerging role as biomarkers and potential causative agents of a wide range of diseases
Recommended from our members
Coding and regulatory variants are associated with serum protein levels and disease.
Circulating proteins can be used to diagnose and predict disease-related outcomes. A deep serum proteome survey recently revealed close associations between serum protein networks and common disease. In the current study, 54,469 low-frequency and common exome-array variants were compared to 4782 protein measurements in the serum of 5343 individuals from the AGES Reykjavik cohort. This analysis identifies a large number of serum proteins with genetic signatures overlapping those of many diseases. More specifically, using a study-wide significance threshold, we find that 2021 independent exome array variants are associated with serum levels of 1942 proteins. These variants reside in genetic loci shared by hundreds of complex disease traits, highlighting serum proteins' emerging role as biomarkers and potential causative agents of a wide range of diseases
Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration
Both short and long sleep are associated with an adverse lipid profile,
likely through different biological pathways. To elucidate the biology
of sleep-associated adverse lipid profile, we conduct multi-ancestry
genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c,
LDL-c and triglycerides). In the total study sample
(discovery + replication) of 126,926 individuals from 5 different
ancestry groups, when considering either long or short total sleep time
interactions in joint analyses, we identify 49 previously unreported
lipid loci, and 10 additional previously unreported lipid loci in a
restricted sample of European-ancestry cohorts. In addition, we identify
new gene-sleep interactions for known lipid loci such as LPL and PCSK9.
The previously unreported lipid loci have a modest explained variance
in lipid levels: most notable, gene-short-sleep interactions explain
4.25% of the variance in triglyceride level. Collectively, these
findings contribute to our understanding of the biological mechanisms
involved in sleep-associated adverse lipid profiles.</p
On the brightness distribution of type Ia supernovae from violent white dwarf mergers
We investigate the brightness distribution expected for thermonuclear explosions that might result from the ignition of a detonation during the violent merger of white dwarf (WD) binaries. Violent WD mergers are a subclass of the canonical double degenerate scenario where two carbon-oxygen (CO) WDs merge when the larger WD fills its Roche-lobe. Determining their brightness distribution is critical for evaluating whether such an explosion model could be responsible for a significant fraction of the observed population of Type Ia supernovae (SNe Ia). We argue that the brightness of an explosion realised via the violent merger model is mainly determined by the mass of 56 Ni produced in the detonation of the primary CO WD. To quantify this link, we use a set of sub-Chandrasekhar mass WD detonation models to derive a relationship between primary WD mass (mWD) and expected peak bolometric brightness (Mbol). We use this mWD-Mbol relationship to convert the masses of merging primary WDs from binary population models to a predicted distribution of explosion brightness. We also investigate the sensitivity of our results to assumptions about the conditions required to realise a detonation during violent mergers of WDs. We find a striking similarity between the shape o
Structure and rna synthesis of the nucleus of ehrlich ascites tumor cells following dinitrophenal and riboflavin.
- …
