39 research outputs found

    SAMFIRE: multi-locus variant calling for time-resolved sequence data.

    Get PDF
    UNLABELLED: An increasingly common method for studying evolution is the collection of time-resolved short-read sequence data. Such datasets allow for the direct observation of rapid evolutionary processes, as might occur in natural microbial populations and in evolutionary experiments. In many circumstances, evolutionary pressure acting upon single variants can cause genomic changes at multiple nearby loci. SAMFIRE is an open-access software package for processing and analyzing sequence reads from time-resolved data, calling important single- and multi-locus variants over time, identifying alleles potentially affected by selection, calculating linkage disequilibrium statistics, performing haplotype reconstruction and exploiting time-resolved information to estimate the extent of uncertainty in reported genomic data. AVAILABILITY AND IMPLEMENTATION: C ++ code may be found at https://github.com/cjri/samfire/ CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.CI was supported by a Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society (Grant Number 101239/Z/13/Z).This is the author accepted manuscript. The final version is available from Oxford University Press via http://dx.doi.org/10.1093/bioinformatics/btw20

    A large effective population size for established within-host influenza virus infection

    Get PDF
    Strains of the influenza virus form coherent global populations, yet exist at the level of single infections in individual hosts. The relationship between these scales is a critical topic for understanding viral evolution. Here we investigate the within-host relationship between selection and the stochastic effects of genetic drift, estimating an effective population size of infection Ne for influenza infection. Examining whole-genome sequence data describing a chronic case of influenza B in a severely immunocompromised child we infer an Ne of 2.5 × 107 (95% confidence range 1.0 × 107 to 9.0 × 107) suggesting that genetic drift is of minimal importance during an established influenza infection. Our result, supported by data from influenza A infection, suggests that positive selection during within-host infection is primarily limited by the typically short period of infection. Atypically long infections may have a disproportionate influence upon global patterns of viral evolution

    Building a mechanistic mathematical model of hepatitis C virus entry

    Get PDF
    The mechanism by which hepatitis C virus (HCV) gains entry into cells is a complex one, involving a broad range of host proteins. Entry is a critical phase of the viral lifecycle, and a potential target for therapeutic or vaccine-mediated intervention. However, the mechanics of HCV entry remain poorly understood. Here we describe a novel computational model of viral entry, encompassing the relationship between HCV and the key host receptors CD81 and SR-B1. We conduct experiments to thoroughly quantify the influence of an increase or decrease in receptor availability upon the extent of viral entry. We use these data to build and parameterise a mathematical model, which we then validate by further experiments. Our results are consistent with sequential HCV-receptor interactions, whereby initial interaction between the HCV E2 glycoprotein and SR-B1 facilitates the accumulation CD81 receptors, leading to viral entry. However, we also demonstrate that a small minority of virus can achieve entry in the absence of SR-B1. Our model estimates the impact of the different obstacles that viruses must surmount to achieve entry; among virus particles attaching to the cell surface, around one third of viruses accumulate sufficient CD81 receptors, of which 4-8% then complete the subsequent steps to achieve productive infection. Furthermore, we make estimates of receptor stoichiometry; in excess of 10 receptors are likely to be required to achieve viral entry. Our model provides a tool to investigate the entry characteristics of HCV variants and outlines a framework for future quantitative studies of the multi-receptor dynamics of HCV entry

    The airborne transmission of viruses causes tight transmission bottlenecks

    Get PDF
    The transmission bottleneck describes the number of viral particles that initiate an infection in a new host. Previous studies have used genome sequence data to suggest that transmission bottlenecks for influenza and SARS-CoV-2 involve few viral particles, but the general principles of virus transmission are not fully understood. Here we show that, across a broad range of circumstances, tight transmission bottlenecks are a simple consequence of the physical process of airborne viral transmission. We use mathematical modelling to describe the physical process of the emission and inhalation of infectious particles, deriving the result that that the great majority of transmission bottlenecks involve few viral particles. While exceptions to this rule exist, the circumstances needed to create these exceptions are likely very rare. We thus provide a physical explanation for previous inferences of bottleneck size, while predicting that tight transmission bottlenecks prevail more generally in respiratory virus transmission

    Efficacy of air cleaning units for preventing SARS-CoV-2 and other hospital-acquired infections on medicine for older people wards: a quasi-experimental controlled before-and-after study

    Get PDF
    Background: Nosocomial infections are costly, and airborne transmission is increasingly recognized as important for spread. Air cleaning units (ACUs) may reduce transmission, but little research has focused on their effectiveness on open wards. Aim: To assess whether ACUs reduce nosocomial severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), or other, infections on older adult inpatient wards. Methods: This was a quasi-experimental before-and-after study on two intervention–control ward pairs in a UK teaching hospital. Infections were identified using routinely collected electronic health record data during 1 year of ACU implementation and the preceding year (‘core study period’). Extended analyses included 6 months of additional data from one ward pair following ACU removal. Hazard ratios (HRs) were estimated through Cox regression controlling for age, sex, ward and background infection risk. The time that the ACUs were switched on was also recorded for Intervention Ward 2. Findings: ACUs were initially feasible, but compliance reduced towards the end of the study (average operation in first vs second half of ACU time on Intervention Ward 2: 77% vs 53%). In total, 8171 admissions for >48 h (6112 patients, median age 85 years) were included. Overall, the incidence of ward-acquired SARS-CoV-2 was 3.8%. ACU implementation was associated with a non-significant trend of lower hazard for SARS-CoV-2 infection [HR core study period 0.90, 95% confidence interval (CI) 0.53–1.52; HR extended study period 0.78, 95% CI 0.53–1.14]. Only 1.5% of admissions resulted in other notable ward-acquired infections. Conclusion: ACUs may reduce SARS-CoV-2 infection to a clinically meaningfully degree. Larger studies could reduce uncertainty, perhaps using a crossover design, and factors influencing acceptability to staff and patients should be explored further

    The effective rate of influenza reassortment is limited during human infection

    Get PDF
    We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus. Treatment of some patients with oseltamivir on the first day of infection did not lead to the emergence of drug resistance variants in patients. Using an evolutionary model, we inferred the effective rate of reassortment between viral segments, measuring the extent to which randomly chosen viruses within the host exchange genetic material. We find strong evidence that the rate of effective reassortment is low, such that genetic associations between polymorphic loci in different segments are preserved during the course of an infection in a manner not compatible with epistasis. Combining our evidence with that of previous studies we suggest that spatial heterogeneity in the viral population may reduce the extent to which reassortment is observed. Our results do not contradict previous findings of high rates of viral reassortment in vitro and in small animal studies, but indicate that in human hosts the effective rate of reassortment may be substantially more limited.CJRI is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 101239/Z/13/Z) and received support from the National Science Foundation Research Coordination Network on Infectious Disease Evolution Across Scales. KK, ASL, CWW, and MTM were funded by NIGMS U54-GM111274, the MIDAS Center for Inference and Dynamics of Infectious Disease. ASL acknowledges support from the MSTP training grant number T32 GM007171. GJDS was supported by the Duke-NUS Signature Research Programme funded by the Ministry of Health, Singapore and by contract HHSN272201400006C from the National Institute of Allergy and Infectious Disease, National Institutes of Health, Department of Health and Human Services, USA. DEW, RAH, XL, AR, TBS, SRD and also the influenza whole genome sequencing were supported with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract HHSN272200900007C. GSG was funded by the Defense Advanced Research Projects Agency under grant number DARPA-N66001-07-C-2024. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Evolution Across Scales. KK, ASL, CWW, and MTM were funded by NIGMS U54- GM111274, the MIDAS Center for Inference and Dynamics of Infectious Disease. DEW, RAH, XL, AR, TBS, and SRD were supported with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract HHSN272200900007C. GSG was funded by the Defense Advanced Research Projects Agency under grant number DARPA-N66001-07-C-2024. This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council

    Fitness Landscape of the Fission Yeast Genome

    Get PDF
    The relationship between DNA sequence, biochemical function and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in non-coding regions, particularly in eukaryote genomes. In part, this is because we lack a complete description of the essential non-coding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness, genetic diversity, divergence and expected functional regions based on transcription and gene annotations. Through several analyses, we conclude that transposon insertions produced fitness effects in 66-90% of the genome, including substantial portions of the non-coding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of comparative genomics and transcriptomics to detect functional units. In this species, 3' and 5' untranslated regions were the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative genomics. We conclude that the combination of transposon mutagenesis, evolutionary and biochemical data can provide new insights into the relationship between genome function and molecular evolution

    Progress in Modelling Electrostatics and Polarization Through Effective Multipoles and Induced Charges

    No full text
    Here we present a method for modeling polarization in hybrid QM/MM calculations. The method, which expresses the induced dipoles as a set of 'induced' charges, is based on the induced dipole approach and methodology for calculating potential-derived point charges from distributed multipole series. Here we assess the importance of explicit polarization in the classical part of a QM/MM system with regard to improving the classical description and the consequent effects on the quantum description. The main advantages of the induced charge approach are that the method is readily interfaced with quantum mechanical methods and that induced charges are more readily interpreted than induced dipoles. The ease of interpretation is illustrated by analysis of the charges involved in dimeric and trimeric hydrogen bonded systems. The method has been validated using two energy decomposition approaches, which show that MM polarization makes a significant and reliable contribution to the QM – MM interaction energy in a hybrid system. The method has been modified to assess the likely effect of QM and MM polarization on docking. Since the lack of polarization is only one of a number of deficiencies in current docking approaches, we have also used connectivity to assess alternative docking poses
    corecore