1,973 research outputs found

    Generalized binomial distribution in photon statistics

    Full text link
    The photon-number distribution between two parts of a given volume is found for an arbitrary photon statistics. This problem is related to the interaction of a light beam with a macroscopic device, for example a diaphragm, that separates the photon flux into two parts with known probabilities. To solve this problem, a Generalized Binomial Distribution (GBD) is derived that is applicable to an arbitrary photon statistics satisfying probability convolution equations. It is shown that if photons obey Poisson statistics then the GBD is reduced to the ordinary binomial distribution, whereas in the case of Bose-Einstein statistics the GBD is reduced to the Polya distribution. In this case, the photon spatial distribution depends on the phase-space volume occupied by the photons. This result involves a photon bunching effect, or collective behavior of photons that sharply differs from the behavior of classical particles. It is shown that the photon bunching effect looks similar to the quantum interference effect.Comment: 8 pages, 4 figure

    Stoponium Search at Photon Linear Collider

    Full text link
    In some supersymmetric extensions of the Standard Model fairly light superpartner of t-quark is predicted, which may form bound states ({\it stoponiums}) under certain conditions. We study prospects of search for stoponium at the future Photon Linear Collider. It is found that this machine could be the best machine for discovery and study of these resonances at some scenarios of supersymmetric extension of the Standard Model. In particular, if the hhhh decay channel is dominant stoponium could be observed at the beginning of PLC run with collision energy tuned at the stoponium mass. If this channel is kinematically closed stoponium could be discovered in gggg, γγ\gamma\gamma and ZZZZ decay channels but higher statistics are needed. Effects of the stoponium-Higgs mixing and degeneracy are briefly discussed.Comment: 11 pages, 2 figures added, corrections taken into account result in increasing of signal significanc

    Looking for anomalous gamma-gamma-H and Z-gamma-H couplings at future linear collider

    Full text link
    We consider the possibility of studying anomalous contributions to the gamma-gamma-H and Z-gamma-H vertices through the process e-gamma--> e-H at future e-gamma linear colliders, with Sqrt(S)=500-1500 GeV. We make a model independent analysis based on SU(2)xU(1) invariant effective operators of dim=6 added to the standard model lagrangian. We consider a light Higgs boson (mostly decaying in bar(b)-b pairs), and include all the relevant backgrounds. Initial e-beam polarization effects are also analyzed. We find that the process e-gamma--> e-H provides an excellent opportunity to strongly constrain both the CP-even and the CP-odd anomalous contributions to the gamma-gamma-H and Z-gamma-H vertices.Comment: LaTeX, 33 pages, 16 eps figures, extended section

    Optimization of symbolic evaluation of helicity amplitudes

    Get PDF
    We present a method for symbolic evaluation of Feynman amplitudes. We construct special polarization basis for spinor particles which produces compact expressions for tensor products of basis spinors.Comment: Standard LaTeX, 6 pages. To appear in the proceedings of the Seventh International Workshop on Advanced Computing and Analysis Technics in Physics Research (ACAT2000, Fermilab, October 16-20, 2000

    Simplification of Flavour Combinatorics in the Evaluation of Hadronic Processes

    Get PDF
    A serious computational problem in the evaluation of hadronic collision processes is connected with the large number of partonic subprocesses included in the calculation. These are from the quark and gluon content of the initial hadrons, and from CKM quark mixing. For example, there are 180 subprocesses which contribute to the WW+2jets process, and 292 subprocesses in WW+3jets production at the LHC, even when quarks from only the first two generations are taken into account. We propose a simple modification of the rules for evaluation of cross sections and distributions, which avoids multiplication of channels from the mixture of quark states. The method is based on a unitary rotation of down quarks, thus, transporting the mixing matrix elements from vertices of Feynman diagrams to the parton distribution functions (PDF). As a result, one can calculate cross sections with significantly fewer subprocesses. For the example mentioned above, with the new rules, one need evaluate only 21 and 33 subprocesses respectively. The matrix elements of the subprocesses are calculated without quark mixing but with a modified PDF convolution which depends on the quark mixing angle, and on the topologies of gauge invariant classes of diagrams. The proposed method has been incorporated into the CompHEP program and checked with various examples.Comment: 10 pages (standard LaTeX code), 3 figures, 2 table
    corecore