55 research outputs found

    A simple and rapid method for detection of Trypanosoma evansi in the dromedary camel using a nested polymerase chain reaction

    Get PDF
    A nested polymerase chain reaction (nPCR)-based assay, was developed and evaluated for rapid detection of Trypanosoma evansi in experimentally infected mice and naturally infected camels (Camelus dromedarius). Four oligonucleotide primers (TE1, TE2, TE3 and TE4), selected from nuclear repetitive gene of T. evansi, were designed and used for PCR amplifications. The first amplification, using a pair of outer primers TE1 and TE2, produced a 821-bp primary PCR product from T. evansi DNA. The second amplification, using nested (internal) pair of primers TE3 and TE4, produced a 270-bp PCR product. T. evansi DNAs extracted from blood samples of experimentally infected mice and naturally infected Sudanese breed of dromedary camels were detected by this nested PCR-based assay. The nested primers TE3 and TE4 increased the sensitivity of the PCR assay and as little as 10 fg of T. evansi DNA (equivalent to a single copy of the putative gene of the parasite) was amplified and visualized onto ethidium bromide-stained agarose gels. Amplification products were not detected when the PCR-based assay was applied to DNA from other blood parasites including Thieleria annulata, Babesia bigemina or nucleic acid free samples. Application of this nPCR-based assay to clinical samples resulted in direct detection of T. evansi from a variety of tissue samples collected from experimentally infected mice and blood from naturally infected camels. The described nPCR-based assay provides a valuable tool to study the epidemiology of T. evansi infection in camels and other susceptible animal populations

    Prevalence of bluetongue virus infection and associated risk factors among cattle in North Kordufan State, Western Sudan

    Get PDF
    Abstract Background Bluetongue virus causes febrile disease in sheep and a fatal hemorrhagic infection in North American White-tailed deer. However, in cattle the disease is typically asymptomatic and no clinical overt disease is associated with bluetongue infection. Bluetongue virus activity has been detected in Khartoum, Sennar and South Darfur states of the Sudan. Currently, no information is available in regard to previous exposure of livestock to Bluetongue virus in North Kordufan State, the largest livestock producing region in the country. The present study was conducted to determine the prevalence of bluetongue antibodies and to identify the potential risk factors associated with the presence of bluetongue antibodies among cattle in North Kordufan State, Sudan. A total of 299 bovine blood samples were collected randomly from six localities in North Kordufan State and were tested by enzyme-linked immunosorbent assay (ELISA) for detection of BTV-specific immunoglobulin G (IgG) antibodies. Results The serological evidence of Bluetongue virus infection was observed in 58 out of 299 cows, accounting for a 19.4% prevalence rate among cattle in North Kordufan State. Older cattle (&gt;2 years of age) had four times the odds to be infected with BTV compared to young cattle (OR = 4.309, CI = 1.941-9.567, p-value = 0.01). Application of preventive measures, such as spraying or dipping with insecticide protects cattle against Bluetongue infection. Application of vector control measures decreased the odds for bluetongue seropositivity by 7 times (OR = 7.408, CI = 3.111-17.637, p-value = 0.01). Conclusions The results of this study indicated that age and application of routine insecticides are influential risk factors for seroprevalence of Bluetongue in cattle. Surveillance of Bluetongue virus should be extended to include other susceptible animals and to study the distribution of the insect vectors in the region to better predict and respond to BTV outbreak in the State of North Kordufan, Sudan. </jats:sec

    A nosocomial transmission of crimean-congo hemorrhagic fever to an attending physician in north kordufan, Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Crimean-Congo hemorrhagic fever (CCHF), a tick-borne disease caused by Crimean-Congo hemorrhagic fever virus (CCHFV), is a member of the genus Nairovirus in the family Bunyaviridae. Recently, CCHFV has been reported as an important emerging infectious viral pathogen in Sudan. Sporadic cases and multiple CCHF outbreaks, associated with nosocomial chain of transmission, have been reported in the Kordufan region of Sudan.</p> <p>Aims</p> <p>To confirm CCHF in an index patient and attending physician in North Kordufan region, Sudan, and to provide some information on virus genetic lineages.</p> <p>Methods</p> <p>Antibody captured ELISA, reverse transcription PCR, partial S segment sequences of the virus and subsequent phylogenetic analysis were used to confirm the CCHFV infection and to determine the virus genetic lineages.</p> <p>Results</p> <p>CCHF was confirmed by monitoring specific IgM antibody and by detection of the viral genome using RT-PCR. Treatment with oral ribavirin, replacement with fluid therapy, blood transfusion and administration of platelets concentrate resulted in rapid improvement of the health condition of the female physician. Phylogenetic analysis of the partial S segment sequences of the 2 CCHFV indicates that both strains are identical and belong to Group III virus lineage, which includes viruses from Africa including, Sudan, Mauritania, South Africa and Nigeria.</p> <p>Conclusion</p> <p>Further epidemiologic studies including, CCHFV complete genome analysis and implementation of improved surveillance are urgently needed to better predict and respond to CCHF outbreaks in the Kordufan region, Sudan.</p

    Rift Valley fever among febrile patients at New Halfa hospital, eastern Sudan

    Get PDF
    BACKGROUND: Since the first isolation of the Rift Valley Fever virus (RVFV) in 1930s, there have been several epizootics outbreaks in the tropic mainly in Africa including Sudan. Recognition of cases and diagnosis of RVF are critical for management and control of the disease. AIMS: To investigate the seroprevalence and risk factors for seropostive to RVFV IgG among febrile patients. METHODS: All febrile patients presented to New Halfa hospital in eastern Sudan during September through November 2007 were investigated to identify the cause of their fever including malaria and RFV. RESULTS: Out of 290 feverish patients presented to the hospital, malaria was diagnosis in 94 individuals. Fevers of unknown origin were diagnosed in 149 patients. Seropostive to RVFV IgG was detected by enzyme-linked immunosorbent assay in 122 (81.8%) of the sera from these 149 patients with fever of unknown origin. While socio-demographic characteristics (age, Job, education and residency) were not associated with seropostive to RVFV IgG, male (OR = 2.8, 95% CI = 1.0-7.6; P = 0.04) were at three times higher risk for seropostive to RVFV IgG. CONCLUSION: There was a high seropostive to RVFV IgG in this setting, more research is needed perhaps using other methods like PCR and IGM

    Nosocomial Outbreak of Crimean-Congo Hemorrhagic Fever, Sudan

    Get PDF
    To confirm the presence of Crimean-Congo hemorrhagic fever in Sudan, we tested serum of 8 patients with hemorrhagic fever in a rural hospital in 2008. Reverse transcription–PCR identified Crimean-Congo hemorrhagic fever virus. Its identification as group III lineage indicated links to virus strains from South Africa, Mauritania, and Nigeria

    Multiple Crimean-Congo Hemorrhagic Fever Virus Strains Are Associated with Disease Outbreaks in Sudan, 2008–2009

    Get PDF
    The tick-borne virus which causes the disease Crimean-Congo hemorrhagic fever (CCHF) is known to be widely distributed throughout much of Africa, Southern Europe, the Middle East, Central Asia, and Southern Russia. Humans contract the virus from contact with infected people, infected animals (which do not show symptoms), and from the bite of infected ticks. CCHF was recently recognized in the Sudan when several hospital staff and patients died from the disease in a rural hospital. The genetic analysis of viruses associated with the 2008 and 2009 outbreaks shows that several CCHF viral strains currently circulate and cause human outbreaks in the Sudan, highlighting CCHF virus as an emerging pathogen. The Sudanese strains are similar to others circulating in Africa, indicating movement of virus over large distances with introduction and disease outbreaks in rural areas possible. Understanding the epidemiology of zoonotic diseases such as CCHF is especially important in the Sudan given the large numbers of livestock in the country, and their importance to the economy and rural communities. It is imperative that hospital staff consider CCHF as a possible disease agent, since they are at a high risk of contracting the disease, especially in hospitals with limited medical supplies
    corecore