744 research outputs found

    Dynamics of Quantum Dot Nuclear Spin Polarization Controlled by a Single Electron

    Full text link
    We present an experimental study of the dynamics underlying the buildup and decay of dynamical nuclear spin polarization in a single semiconductor quantum dot. Our experiment shows that the nuclei can be polarized on a time scale of a few milliseconds, while their decay dynamics depends drastically on external parameters. We show that a single electron can very efficiently depolarize the nuclear spins and discuss two processes that can cause this depolarization. Conversely, in the absence of a quantum dot electron, the lifetime of nuclear spin polarization is on the time scale of a second, most likely limited by the non-secular terms of the nuclear dipole-dipole interaction. We can further suppress this depolarization rate by 1-2 orders of magnitude by applying an external magnetic field exceeding 1 mT.Comment: 5 pages, 3 figure

    Effective cross-Kerr nonlinearity and robust phase gates with trapped ions

    Full text link
    We derive an effective Hamiltonian that describes a cross-Kerr type interaction in a system involving a two-level trapped ion coupled to the quantized field inside a cavity. We assume a large detuning between the ion and field (dispersive limit) and this results in an interaction Hamiltonian involving the product of the (bosonic) ionic vibrational motion and field number operators. We also demonstrate the feasibility of operation of a phase gate based on our hamiltonian. The gate is insensitive to spontaneous emission, an important feature for the practical implementation of quantum computing.Comment: Included discussion of faster gates (Lamb-Dicke regime), Corrected typos, and Added reference

    Frequency down conversion through Bose condensation of light

    Get PDF
    We propose an experimental set up allowing to convert an input light of wavelengths about 12μm1-2 \mu m into an output light of a lower frequency. The basic principle of operating relies on the nonlinear optical properties exhibited by a microcavity filled with glass. The light inside this material behaves like a 2D interacting Bose gas susceptible to thermalise and create a quasi-condensate. Extension of this setup to a photonic bandgap material (fiber grating) allows the light to behave like a 3D Bose gas leading, after thermalisation, to the formation of a Bose condensate. Theoretical estimations show that a conversion of 1μm1 \mu m into 1.5μm1.5 \mu m is achieved with an input pulse of about 1ns1 ns with a peak power of 103W10^3 W, using a fiber grating containing an integrated cavity of size about 500μm×100μm2500 \mu m \times 100 \mu m^2.Comment: 4 pages, 1 figure

    The quantum optical Josephson interferometer

    Full text link
    The interplay between coherent tunnel coupling and on-site interactions in dissipation-free bosonic systems has lead to many spectacular observations, ranging from the demonstration of number-phase uncertainty relation to quantum phase transitions. To explore the effect of dissipation and coherent drive on tunnel coupled interacting bosonic systems, we propose a device that is the quantum optical analog of a Josephson interferometer. It consists of two coherently driven linear optical cavities connected via a central cavity with a single-photon nonlinearity. The Josephson-like oscillations in the light emitted from the central cavity as a function of the phase difference between two pumping fields can be suppressed by increasing the strength of the nonlinear coupling. Remarkably, we find that in the limit of ultra-strong interactions in the center-cavity, the coupled system maps on to an effective Jaynes-Cummings system with a nonlinearity determined by the tunnel coupling strength. In the limit of a single nonlinear cavity coupled to two linear waveguides, the degree of photon antibunching from the nonlinear cavity provides an excellent measure of the transition to the nonlinear regime where Josephson oscillations are suppressed.Comment: 9 pages, 7 figure
    corecore