35 research outputs found
Making Global Climate Action work for nature and people: Priorities for Race to Zero and Race to Resilience
There is increasing recognition in science and policy that the current nature and climate change crises are highly intertwined, and that these need to be jointly addressed. Within the United Nations Framework Convention on Climate Change (UNFCCC), the Race to Zero (R2Z) and the Race to Resilience (R2R) campaigns foster climate action by cities, regions, businesses, investors, and civil society organizations for mitigation and adaptation. The campaigns are part of UNFCCC-backed institutional arrangements linking intergovernmental climate governance with actions beyond national commitments to support the implementation of the Paris Agreement, also referred to as the Global Climate Action Agenda (GCAA). Both mobilization campaigns highlight and promote the contribution of nature to climate mitigation, adaptation, and resilience. Yet, the integration of nature in climate ambition is more complex than indicated in the calls to action. We here identify key areas of concern in the alignment of climate and biodiversity goals, discussing the biophysical and socio-ecological considerations relative to (i) practices for enhancing land-based and marine sinks to limit warming; (ii) the unpredictability of biodiversity dynamics under climate change; (iii) the spatial scale at which actions can be implemented; and (iv) the types of metrics that can be used for tracking progress. We provide recommendations for the two mobilization campaigns to integrate in their criteria and metrics frameworks to support effective and equitable actions that deliver for climate, but also for nature and people. We then make a call to action for transdisciplinary knowledge production and dissemination that strengthens science-policy interactions
Allometric relationships of frequently used shade tree species in cacao agroforestry systems in Sulawesi, Indonesia
The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis
EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein–protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis
Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations
Intravenous and subcutaneous immunoglobulin preparations, consisting of IgG class antibodies, are increasingly used to treat a broad range of pathological conditions, including humoral immune deficiencies, as well as acute and chronic inflammatory or autoimmune disorders. A plethora of Fab- or Fc-mediated immune regulatory mechanisms has been described that might act separately or in concert, depending on pathogenesis or stage of clinical condition. Attempts have been undertaken to improve the efficacy of polyclonal IgG preparations, including the identification of relevant subfractions, mild chemical modification of molecules, or modification of carbohydrate side chains. Furthermore, plasma-derived IgA or IgM preparations may exhibit characteristics that might be exploited therapeutically. The need for improved treatment strategies without increase in plasma demand is a goal and might be achieved by more optimal use of plasma-derived proteins, including the IgA and the IgM fractions. This article provides an overview on the current knowledge and future strategies to improve the efficacy of regular IgG preparations and discusses the potential of human plasma-derived IgA, IgM, and preparations composed of mixtures of IgG, IgA, and IgM
A novel mutation and first report of dilated cardiomyopathy in ALG6-CDG (CDG-Ic): a case report
The contribution of RADARSAT-1 SAR imagery to monitor land use in coastal areas of Costa Rica and Nicaragua
Genetic defects in dolichol metabolism
Contains fulltext :
155350.pdf (publisher's version ) (Open Access)Congenital disorders of glycosylation (CDG) comprise a group of inborn errors of metabolism with abnormal glycosylation of proteins and lipids. Patients with defective protein N-glycosylation are identified in routine metabolic screening via analysis of serum transferrin glycosylation. Defects in the assembly of the dolichol linked Glc(3)Man(9)GlcNAc(2) glycan and its transfer to proteins lead to the (partial) absence of complete glycans on proteins. These defects are called CDG-I and are located in the endoplasmic reticulum (ER) or cytoplasm. Defects in the subsequent processing of protein bound glycans result in the presence of truncated glycans on proteins. These defects are called CDG-II and the enzymes involved are located mainly in the Golgi apparatus. In recent years, human defects have been identified in dolichol biosynthesis genes within the group of CDG-I patients. This has increased interest in dolichol metabolism, has resulted in specific recognizable clinical symptoms in CDG-I and has offered new mechanistic insights in dolichol biosynthesis. We here review its biosynthetic pathways, the clinical and biochemical phenotypes in dolichol-related CDG defects, up to the formation of dolichyl-P-mannose (Dol-P-Man), and discuss existing evidence of regulatory networks in dolichol metabolism to provide an outlook on therapeutic strategies
