1 research outputs found
Phase diagram of two-component bosons on an optical lattice
We present a theoretical analysis of the phase diagram of two--component
bosons on an optical lattice. A new formalism is developed which treats the
effective spin interactions in the Mott and superfluid phases on the same
footing. Using the new approach we chart the phase boundaries of the broken
spin symmetry states up to the Mott to superfluid transition and beyond. Near
the transition point, the magnitude of spin exchange can be very large, which
facilitates the experimental realization of spin-ordered states. We find that
spin and quantum fluctuations have a dramatic effect on the transition making
it first order in extended regions of the phase diagram. For Mott states with
even occupation we find that the competition between effective Heisenberg
exchange and spin-dependent on--site interaction leads to an additional phase
transition from a Mott insulator with no broken symmetries into a spin-ordered
insulator
