1,635 research outputs found
Thioalkalicoccus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b
Four strains of purple sulfur bacteria containing bacteriochlorophyll b were isolated from cyanobacterial mats of soda lakes in the steppe of south-east Siberia, Russia. Cells of all strains were cocci without gas vesicles. Eventually, cells with flagella were seen in the electron microscope, but motile cells were observed very rarely in cultures. Internal photosynthetic membranes were of the tubular type. Photosynthetic pigments were bacteriochlorophyll b and carotenoids with spectral characteristics similar to 3,4,3',4'-tetrahydrospirilloxanthin. The bacteria were obligately phototrophic and strictly anaerobic. Hydrogen sulfide and elemental sulfur were used as photosynthetic electron donors. Thiosulfate was not used. During growth on sulfide, sulfur globules were formed as intermediate oxidation products, deposited inside the cells and centrally located. In the presence of sulfide and sodium bicarbonate, acetate, malate, propionate, pyruvate, succinate, fumarate and yeast extract were photoassimilated. Growth factors were not required. The new bacterium is an obligate alkaliphile growing at pH 8-10 with an optimum at pH 9. It showed good growth up to 6.0% sodium chloride and up to 8.5% sodium carbonates. Phenotypically, it is similar to Thiococcus pfennigii, but different by virtue of its alkaliphily and salt tolerance. The DNA G+C content was 63.6-64.8 mol %, compared to 69.4-69.9 mol % for Thiococcus pfennigii. The 16S rDNA sequence of strain A26T was approximately 92% similar to that of Thiococcus pfennigii DSM 226 and therefore a new genus and species name, Thioalkalicoccus limnaeus gen. nov. and sp. nov., are proposed for the new bacteriu
Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA
Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined for each urban area emanating outward from the urban core to the nonurban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is further constrained by biome and elevation to insure objective intercomparisons between zones and between cities in different biomes permitting the definition of hierarchically ordered zones that are consistent across urban areas in different ecological setting and across scales. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban-rural temperature difference) the largest (8 C average) observed for cities built in biomes dominated by temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially warmer than the non-urban fringe by 2.9 C, except for urban areas in biomes with arid and semiarid climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 C temperature difference in summer and only 1.3 C in winter. In desert environments, the LST's response to ISA presents an uncharacteristic "U-shaped" horizontal gradient decreasing from the urban core to the outskirts of the city and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a possible heat sink effect. These observational results show that the urban heat island amplitude both increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes
A polynomial training algorithm for calculating perceptrons of optimal stability
Recomi (REpeated COrrelation Matrix Inversion) is a polynomially fast
algorithm for searching optimally stable solutions of the perceptron learning
problem. For random unbiased and biased patterns it is shown that the algorithm
is able to find optimal solutions, if any exist, in at worst O(N^4) floating
point operations. Even beyond the critical storage capacity alpha_c the
algorithm is able to find locally stable solutions (with negative stability) at
the same speed. There are no divergent time scales in the learning process. A
full proof of convergence cannot yet be given, only major constituents of a
proof are shown.Comment: 11 pages, Latex, 4 EPS figure
Exploring the Influence of Impervious Surface Density and Shape on Urban Heat Islands in the Northeast USA Using MODIS and Landsat
Impervious surface area (ISA) from the National Land Cover Database (NLCD) 2001 and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature and its relationship to settlement size and shape, development intensity distribution, and land cover composition for 42 urban settlements embedded in forest biomes in the Northeastern United States. Development intensity zones, based on percent ISA, are defined for each urban area emanating outward from the urban core to nearby rural areas and are used to stratify land surface temperature. The stratification is further constrained by biome type and elevation to insure objective intercomparisons between urban zones within an urban settlement and between settlements. Stratification based on ISA allows the definition of hierarchically ordered urban zones that are consistent across urban settlements and scales. In addition to the surrounding ecological context, we find that the settlement size and shape as well as the development intensity distribution significantly influence the amplitude of summer daytime UHI. Within the Northeastern US temperate broadleaf mixed forest, UHI magnitude is positively related to the logarithm of the urban area size. Our study indicates that for similar urban area sizes, the development intensity distribution is one of the major drivers of UHI. In addition to urban area size and development intensity distribution, this analysis shows that both the shape of the urban area and the land cover composition in the surrounding rural area play an important role in modulating the UHI magnitude in different urban settlements. Our results indicate that remotely sensed urban area size and shape as well as the development intensity distribution influence UHI amplitude across regional scales
Thiorhodospira sibirica gen. nov., and sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake
A new purple sulfur bacterium was isolated from microbial films on decaying plant mass in the near-shore area of the soda lake Malyi Kasytui (pH 9.5, 0.2% salinity) located in the steppe of the Chita region of south-east Siberia. Single cells were vibrioid- or spiral-shaped (3-4 microns wide and 7-20 microns long) and motile by means of a polar tuft of flagella. Internal photosynthetic membranes were of the lamellar type. Lamellae almost filled the whole cell, forming strands and coils. Photosynthetic pigments were bacteriochlorophyll a and carotenoids of the spirilloxanthin group. The new bacterium was strictly anaerobic. Under anoxic conditions, hydrogen sulfide and elemental sulfur were used as photosynthetic electron donors. During growth on sulfide, sulfur globules were formed as intermediate oxidation products. They were deposited outside the cytoplasm of the cells, in the peripheral periplasmic space and extracellularly. Thiosulfate was not used. Carbon dioxide, acetate, pyruvate, propionate, succinate, fumarate and malate were utilized as carbon sources. Optimum growth rates were obtained at pH 9.0 and optimum temperature was 30 degrees C. Good growth was observed in a mineral salts medium containing 5 g sodium bicarbonate l-1 without sodium chloride. The new bacterium tolerated up to 60 g sodium chloride l-1 and up to 80 g sodium carbonates l-1. Growth factors were not required. The DNA G + C composition was 56.0-57.4 mol%. Based on physiological, biochemical and genetic characteristics, the newly isolated bacterium is recognized as a new species of a new genus with the proposed name Thiorhodospira sibirica
Optimal coloured perceptrons
Ashkin-Teller type perceptron models are introduced. Their maximal capacity
per number of couplings is calculated within a first-step
replica-symmetry-breaking Gardner approach. The results are compared with
extensive numerical simulations using several algorithms.Comment: 8 pages in Latex with 2 eps figures, RSB1 calculations has been adde
On the origin of ionising photons emitted by T Tauri stars
We address the issue of the production of Lyman continuum photons by T Tauri
stars, in an attempt to provide constraints on theoretical models of disc
photoionisation. By treating the accretion shock as a hotspot on the stellar
surface we show that Lyman continuum photons are produced at a rate
approximately three orders of magnitude lower than that produced by a
corresponding black body, and that a strong Lyman continuum is only emitted for
high mass accretion rates. When our models are extended to include a column of
material accreting on to the hotspot we find that the accretion column is
extremely optically thick to Lyman continuum photons. Further, we find that
radiative recombination of hydrogen atoms within the column is not an efficient
means of producing photons with energies greater than 13.6eV, and find that an
accretion column of any conceivable height suppresses the emission of Lyman
continuum photons to a level below or comparable to that expected from the
stellar photosphere. The photospheric Lyman continuum is itself much too weak
to affect disc evolution significantly, and we find that the Lyman continuum
emitted by an accretion shock is similarly unable to influence disc evolution
significantly. This result has important consequences for models which use
photoionisation as a mechanism to drive the dispersal of circumstellar discs,
essentially proving that an additional source of Lyman continuum photons must
exist if disc photoionisation is to be significant.Comment: 6 pages, 4 figures. Accepted for publication in MNRA
- …
