7 research outputs found

    Local hyperthyroidism promotes pancreatic acinar cell proliferation during acute pancreatitis

    Get PDF
    Proliferation of pancreatic acinar cells is a critical process in the pathophysiology of pancreatic diseases, because limited or defective proliferation is associated with organ dysfunction and patient morbidity. In this context, elucidating the signalling pathways that trigger and sustain acinar proliferation is pivotal to develop therapeutic interventions promoting the regenerative process of the organ.In this study we used genetic and pharmacological approaches to manipulate both local and systemic levels of thyroid hormones to elucidate their role in acinar proliferation following caerulein‐mediated acute pancreatitis in mice. In addition, molecular mechanisms mediating the effects of thyroid hormones were identified by genetic and pharmacological inactivation of selected signalling pathways.In this study we demonstrated that levels of the thyroid hormone 3,3’,5‐triodo‐L‐thyronine (T3) transiently increased in the pancreas during acute pancreatitis. Moreover, by using genetic and pharmacological approaches to manipulate both local and systemic levels of thyroid hormones, we showed that T3 was required to promote proliferation of pancreatic acinar cells, without affecting the extent of tissue damage or inflammatory infiltration.Finally, upon genetic and pharmacological inactivation of selected signalling pathways, we demonstrated that T3 exerted its mitogenic effect on acinar cells via a tightly controlled action on different molecular effectors, including histone deacetylase, AKT, and TGFβ signalling.In conclusion, our data suggest that local availability of T3 in the pancreas is required to promote acinar cell proliferation and provide the rationale to exploit thyroid hormone signalling to enhance pancreatic regeneration

    Effect of sublethal prenatal endotoxaemia on murine placental transport systems and lipid homeostasis

    Full text link
    AbstractInfection alters the expression of transporters that mediate the placental exchange of xenobiotics, lipids and cytokines. We hypothesized that lipopolysaccharide (LPS) modifies the expression of placental transport systems and lipid homeostasis. LPS (150 μg/kg; i.p.) treatments were administered for 4 h or 24 h, animals were euthanized at gestational days (GD) 15.5 or 18.5, and maternal blood, foetuses and placentae were collected. Increased rates of foetal demise were observed at GD15.5 following LPS treatment, whereas at GD18.5, high rates of early labour occurred and were associated with distinct proinflammatory responses. LPS did not alter ABC transporter mRNA expression but decreased Fabppm at GD15.5 (LPS-4 h) and increased Fat/Cd36 lipid transporter mRNA at GD18.5 (LPS-4 h). At the protein level, breast cancer-related protein (BCRP) and Abcg1 levels were decreased in the placental labyrinth zone (Lz) at GD15.5, whereas P-glycoprotein (P-gp) and Bcrp Lz-immunostaining was decreased at GD18.5. In the placental junctional zone (Jz), P-gp, Bcrp and Abcg1 levels were higher at GD18.5. Specific maternal plasma and placental changes in triacylglycerol, free fatty acid, cholesterol, cholesterol ester and monoacylglycerol levels were detected in a gestational age-dependent manner. In conclusion, LPS-induced foetal death and early labour were associated with altered placental ABC and lipid transporter expression and deranged maternal plasma and placental lipid homeostasis. These changes likely modify foetal xenobiotic exposure and placental lipid exchange in cases of bacterial infection.</jats:p

    Contributions of Drug Transporters to Blood-Placental Barrier

    No full text
    corecore