11 research outputs found
An entire exon 3 germ-line rearrangement in the BRCA2 gene: pathogenic relevance of exon 3 deletion in breast cancer predisposition
<p>Abstract</p> <p>Background</p> <p>Germ-line mutations in the <it>BRCA1 </it>and <it>BRCA2 </it>genes are major contributors to hereditary breast/ovarian cancer. Large rearrangements are less frequent in the <it>BRCA2 </it>gene than in <it>BRCA1</it>. We report, here, the first total deletion of exon 3 in the <it>BRCA2 </it>gene that was detected during screening of 2058 index cases from breast/ovarian cancer families for <it>BRCA2 </it>large rearrangements. Deletion of exon 3, which is in phase, does not alter the reading frame. Low levels of alternative transcripts lacking exon 3 (Δ3 delta3 transcript) have been reported in normal tissues, which raises the question whether deletion of exon 3 is pathogenic.</p> <p>Methods</p> <p>Large <it>BRCA2 </it>rearrangements were analysed by QMPSF (Quantitative Multiplex PCR of Short Fluorescent Fragments) or MLPA (Multiplex Ligation-Dependent Probe Amplification). The exon 3 deletion was characterized with a "zoom-in" dedicated CGH array to the <it>BRCA2 </it>gene and sequencing. To determine the effect of exon 3 deletion and assess its pathogenic effect, three methods of transcript quantification were used: fragment analysis of FAM-labelled PCR products, specific allelic expression using an intron 2 polymorphism and competitive quantitative RT-PCR.</p> <p>Results</p> <p>Large rearrangements of <it>BRCA2 </it>were detected in six index cases out of 2058 tested (3% of all deleterious <it>BRCA2 </it>mutations). This study reports the first large rearrangement of the <it>BRCA2 </it>gene that includes all of exon 3 and leads to an <it>in frame </it>deletion of exon 3 at the transcriptional level. Thirty five variants in exon 3 and junction regions of <it>BRCA2 </it>are also reported, that contribute to the interpretation of the pathogenicity of the deletion. The quantitative approaches showed that there are three classes of delta3 <it>BRCA2 </it>transcripts (low, moderate and exclusive). Exclusive expression of the delta3 transcript by the mutant allele and segregation data provide evidence for a causal effect of the exon 3 deletion.</p> <p>Conclusion</p> <p>This paper highlights that large rearrangements and total deletion of exon 3 in the <it>BRCA2 </it>gene could contribute to hereditary breast and/or ovarian cancer. In addition, our findings suggest that, to interpret the pathogenic effect of any variants of exon 3, both accurate transcript quantification and co-segregation analysis are required.</p
5′ Region Large Genomic Rearrangements in the BRCA1 Gene in French Families: Identification of a Tandem Triplication and Nine Distinct Deletions with Five Recurrent Breakpoints
Background: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5′ region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. Results: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. Conclusions: Taken together, our results firmly establish that the BRCA1 5′ region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious
Mutation analysis of PALB2 gene in French breast cancer families
International audienceSeveral population-based and family-based studies have demonstrated that germline mutations of the PALB2 gene (Partner and Localizer of BRCA2) are associated with an increased risk of breast cancer. Distinct mutation frequencies and spectrums have been described depending on the population studied. Here we describe the first complete PALB2 coding sequence screening in the French population. We screened the complete coding sequence and intron-exon boundaries of PALB2, using the EMMA technique, to assess the contribution of pathogenic mutations in a set of 835 familial breast cancer cases and 662 unrelated controls from the French national study GENESIS and the Paul Strauss Cancer Centre, all previously tested negative for BRCA1 and BRCA2 pathogenic mutations. Our analysis revealed the presence of four novel deleterious mutations: c.1186insT, c.1857delT and c.2850delC in three cases, c.3418dupT in one control. In addition, we identified two in-frame insertion/deletion, 19 missense substitutions (two of them predicted as pathogenic), 9 synonymous variants, 28 variants located in introns and 2 in UTRs, as well as frequent variants. Truncating PALB2 mutations were found in 0.36% of familial breast cancer cases, a frequency lower than the one detected in comparable studies in other populations (0.73-3.40%). This suggests a small but significant contribution of PALB2 mutations to the breast cancer susceptibility in the French population
5′ Region Large Genomic Rearrangements in the BRCA1 Gene in French Families: Identification of a Tandem Triplication and Nine Distinct Deletions with Five Recurrent Breakpoints
Background: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5′ region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. Results: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. Conclusions: Taken together, our results firmly establish that the BRCA1 5′ region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.</jats:p
Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants
Abstract
Background
Branch points (BPs) map within short motifs upstream of acceptor splice sites (3’ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3’ss.
Results
We used a large set of constitutive and alternative human 3’ss collected from Ensembl (n = 264,787 3’ss) and from in-house RNAseq experiments (n = 51,986 3’ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3’ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%.
Conclusions
Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3’ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area.
</jats:sec
Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants
International audienceAbstract Background Branch points (BPs) map within short motifs upstream of acceptor splice sites (3’ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3’ss. Results We used a large set of constitutive and alternative human 3’ss collected from Ensembl ( n = 264,787 3’ss) and from in-house RNAseq experiments ( n = 51,986 3’ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3’ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%. Conclusions Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3’ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area
Additional file 2 of Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants
Additional file 2 Table S1. Collection of alternative acceptor splice site (3’ss) and controls 3’ss (n = 103,972), from RNA-seq dat
Additional file 1 of Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants
Additional file 1: Figure S1. Workflow to compare bioinformatics tools on Ensembl and RNA-seq data for the predictions of branch point (BP). Figure S2. The different ways that a variant may alter the branch point score. Figure S3. Running time of the four tools SVM-BPfinder, BPP, Branchpointer, and LaBranchor. Figure S4. Paired comparison of the five tools from the Ensembl data and from the RNA-seq data. Figure S5. The overlap of natural 3′ ss (True Calls) and controls AG (False Calls) from Ensembl data. Figure S6. Splicing junctions filtered out from RNA-seq data. Alt 3’ss: alternative acceptor splice sites. Figure S7. The distribution of the relative expression of alternative 3’ss. Figure S8. The overlap of alternative 3′ ss (True Calls) and controls AG (False Calls) from our RNAseq data. Figure S9. Correlation between the scores (SVM-BPfinder, BPP, Branchpointer, LaBranchoR, RNABPS) and the expression of alternative 3’ss. Figure S10. Repartition of variants (n = 120) according their position relative to the predicted branch point. Figure S11:. Determination of optimal motif (YTRAYNN) length to predict splicing alteration, n = 120 variants. ACC: Accuracy, Pos: relative position in branch point motif, Se: Sensitivity, Sp: Specificity. Figure S12. Cross-validation (1000 times) to select the optimal model to predict branch point alteration. Figure S13. Cross-validation (1000 times) to select the optimal model to predict branch point alteration without the positions of predicted BP for all tools except BPP
Additional file 3 of Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants
Additional file 3 Table S2. Collection of variants used to compare the branch point predictions (n = 120
