2,169 research outputs found

    Is There Really a de Sitter/CFT Duality

    Full text link
    In this paper a de Sitter Space version of Black Hole Complementarity is formulated which states that an observer in de Sitter Space describes the surrounding space as a sealed finite temperature cavity bounded by a horizon which allows no loss of information. We then discuss the implications of this for the existence of boundary correlators in the hypothesized dS/cft correspondence. We find that dS complementarity precludes the existence of the appropriate limits. We find that the limits exist only in approximations in which the entropy of the de Sitter Space is infinite. The reason that the correlators exist in quantum field theory in the de Sitter Space background is traced to the fact that horizon entropy is infinite in QFT.Comment: 12 Figures, STIAS Workshop on Quantum Gravit

    Three-dimensional water impact at normal incidence to a blunt structure

    Get PDF
    The three-dimensional (3D) water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is 3D and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are of main concern in this study

    Charged Particles in a 2+1 Curved Background

    Full text link
    The coupling to a 2+1 background geometry of a quantized charged test particle in a strong magnetic field is analyzed. Canonical operators adapting to the fast and slow freedoms produce a natural expansion in the inverse square root of the magnetic field strength. The fast freedom is solved to the second order. At any given time, space is parameterized by a couple of conjugate operators and effectively behaves as the `phase space' of the slow freedom. The slow Hamiltonian depends on the magnetic field norm, its covariant derivatives, the scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page

    Another weak first order deconfinement transition: three-dimensional SU(5) gauge theory

    Full text link
    We examine the finite-temperature deconfinement phase transition of (2+1)-dimensional SU(5) Yang-Mills theory via non-perturbative lattice simulations. Unsurprisingly, we find that the transition is of first order, however it appears to be weak. This fits naturally into the general picture of "large" gauge groups having a first order deconfinement transition, even when the center symmetry associated with the transition might suggest otherwise.Comment: 17 pages, 8 figure

    R Symmetries in the Landscape

    Full text link
    In the landscape, states with RR symmetries at the classical level form a distinct branch, with a potentially interesting phenomenology. Some preliminary analyses suggested that the population of these states would be significantly suppressed. We survey orientifolds of IIB theories compactified on Calabi-Yau spaces based on vanishing polynomials in weighted projective spaces, and find that the suppression is quite substantial. On the other hand, we find that a Z2Z_2 R-parity is a common feature in the landscape. We discuss whether the cosmological constant and proton decay or cosmology might select the low energy branch. We include also some remarks on split supersymmetry.Comment: 13 page

    Equilibrium configurations of two charged masses in General Relativity

    Get PDF
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model

    Full text link
    Recent comparisons of minimal supergravity (mSUGRA) model predictions with WMAP measurements of the neutralino relic density point to preferred regions of model parameter space. We investigate the reach of linear colliders (LC) with s=0.5\sqrt{s}=0.5 and 1 TeV for SUSY in the framework of the mSUGRA model. We find that LCs can cover the entire stau co-annihilation region provided \tan\beta \alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter space, specialized cuts are suggested to increase the reach in this important ``dark matter allowed'' area. In the case of the HB/FP region, the reach of a LC extends well past the reach of the CERN LHC. We examine a case study in the HB/FP region, and show that the MSSM parameters μ\mu and M2M_2 can be sufficiently well-measured to demonstrate that one would indeed be in the HB/FP region, where the lightest chargino and neutralino have a substantial higgsino component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to conform with published versio

    On the Resolution of the Time-Like Singularities in Reissner-Nordstrom and Negative-Mass Schwarzschild

    Full text link
    Certain time-like singularities are shown to be resolved already in classical General Relativity once one passes from particle probes to scalar waves. The time evolution can be defined uniquely and some general conditions for that are formulated. The Reissner-Nordstrom singularity allows for communication through the singularity and can be termed "beam splitter" since the transmission probability of a suitably prepared high energy wave packet is 25%. The high frequency dependence of the cross section is w^{-4/3}. However, smooth geometries arbitrarily close to the singular one require a finite amount of negative energy matter. The negative-mass Schwarzschild has a qualitatively different resolution interpreted to be fully reflecting. These 4d results are similar to the 2d black hole and are generalized to an arbitrary dimension d>4.Comment: 47 pages, 5 figures. v2: See end of introduction for an important note adde

    On Thermodynamical Properties of Some Coset CFT Backgrounds

    Full text link
    We investigate the thermodynamical features of two Lorentzian signature backgrounds that arise in string theory as exact CFTs and possess more than two disconnected asymptotic regions: the 2-d charged black hole and the Nappi-Witten cosmological model. We find multiple smooth disconnected Euclidean versions of the charged black hole background. They are characterized by different temperatures and electro-chemical potentials. We show that there is no straightforward analog of the Hartle-Hawking state that would express these thermodynamical features. We also obtain multiple Euclidean versions of the Nappi-Witten cosmological model and study their singularity structure. It suggests to associate a non-isotropic temperature with this background.Comment: 1+39 pages, harvmac, 8 eps figure

    Slow Coarsening in an Ising Chain with Competing Interactions

    Full text link
    We investigate the zero-temperature coarsening dynamics of a chain of Ising spins with a nearest-neighbor ferromagnetic and an nth-neighbor antiferromagnetic interactions. For sufficiently large antiferromagnetic interaction, the ground state consists of nn consecutive up spins followed by n down spins, etc. We show that the asymptotic coarsening into this ground state is governed by a multispecies reactive gas of elementary excitations. The basic elementary excitations are identified and each decays at a different power-law rate in time. The dominant excitations are domains of n+1 spins which diffuse freely and disappear through processes which are effectively governed by (n+1)-particle annihilation. This implies that the ground state is approached slowly with time, as t^{-1/n}.Comment: 7 pages, 2 figures, revtex 2-column format, submitted to J. Phys.
    corecore