110 research outputs found
Intestinal Epithelial-Derived TAK1 Signaling Is Essential for Cytoprotection against Chemical-Induced Colitis
We have previously reported that intestinal epithelium-specific TAK1 deleted mice exhibit severe inflammation and mortality at postnatal day 1 due to TNF-induced epithelial cell death. Although deletion of TNF receptor 1 (TNFR1) can largely rescue those neonatal phenotypes, mice harboring double deletion of TNF receptor 1 (TNFR1) and intestinal epithelium-specific deletion of TAK1 (TNFR1KO/TAK1(IE)KO) still occasionally show increased inflammation. This indicates that TAK1 is important for TNF-independent regulation of intestinal integrity.In this study, we investigated the TNF-independent role of TAK1 in the intestinal epithelium. Because the inflammatory conditions were sporadically developed in the double mutant TNFR1KO/TAK1(IE)KO mice, we hypothesize that epithelial TAK1 signaling is important for preventing stress-induced barrier dysfunction. To test this hypothesis, the TNFR1KO/TAK1(IE)KO mice were subjected to acute colitis by administration of dextran sulfate sodium (DSS). We found that loss of TAK1 significantly augments DSS-induced experimental colitis. DSS induced weight loss, intestinal damages and inflammatory markers in TNFR1KO/TAK1(IE)KO mice at higher levels compared to the TNFR1KO control mice. Apoptosis was strongly induced and epithelial cell proliferation was decreased in the TAK1-deficient intestinal epithelium upon DSS exposure. These suggest that epithelial-derived TAK1 signaling is important for cytoprotection and repair against injury. Finally, we showed that TAK1 is essential for interleukin 1- and bacterial components-induced expression of cytoprotective factors such as interleukin 6 and cycloxygenase 2.Homeostatic cytokines and microbes-induced intestinal epithelial TAK1 signaling regulates cytoprotective factors and cell proliferation, which is pivotal for protecting the intestinal epithelium against injury
Repair of Parastomal Hernias with Biologic Grafts: A Systematic Review
Contains fulltext :
98303.pdf (publisher's version ) (Open Access)BACKGROUND: Biologic grafts are increasingly used instead of synthetic mesh for parastomal hernia repair due to concerns of synthetic mesh-related complications. This systematic review was designed to evaluate the use of these collagen-based scaffolds for the repair of parastomal hernias. METHODS: Studies were retrieved after searching the electronic databases MEDLINE, EMBASE and Cochrane CENTRAL. The search terms 'paracolostomy', 'paraileostomy', 'parastomal', 'colostomy', 'ileostomy', 'hernia', 'defect', 'closure', 'repair' and 'reconstruction' were used. Selection of studies and assessment of methodological quality were performed with a modified MINORS index. All reports on repair of parastomal hernias using a collagen-based biologic scaffold to reinforce or bridge the defect were included. Outcomes were recurrence rate, mortality and morbidity. RESULTS: Four retrospective studies with a combined enrolment of 57 patients were included. Recurrence occurred in 15.7% (95% confidence interval [CI] 7.8-25.9) of patients and wound-related complications in 26.2% (95% CI 14.7-39.5). No mortality or graft infections were reported. CONCLUSIONS: The use of reinforcing or bridging biologic grafts during parastomal hernia repair results in acceptable rates of recurrence and complications. However, given the similar rates of recurrence and complications achieved using synthetic mesh in this scenario, the evidence does not support use of biologic grafts
Angiotensin-(1–7) and the G Protein-Coupled Receptor Mas Are Key Players in Renal Inflammation
Angiotensin (Ang) II mediates pathophysiologial changes in the kidney. Ang-(1–7) by interacting with the G protein-coupled receptor Mas may also have important biological activities
Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge
Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion
Faecalibacterium prausnitzii : from microbiology to diagnostics and prognostics
We thank Dr Xavier Aldeguer and MD David Busquets from the Hospital Dr Josep Trueta (Girona, Spain) and M.D Míriam Sabat Mir from the Hospital Santa Caterina (Salt, Spain) for their help and critical discussion concerning clinical aspects. This work was partially funded by the Spanish Ministry of Education and Science through the projects SAF2010-15896 and SAF2013-43284-P, which has been co-financed with FEDER funds. Dr Sylvia H Duncan acknowledges support from the Scottish Government Food, Land and People program.Peer reviewedPostprin
Neutrophil-Lymphocyte Ratio in Branch Retinal Vein Occlusion
Objective: Branch retinal vein occlusion (BRVO) is the most common retinal vascular disease following diabetic retinopathy. Pathogenesis of BRVO is multifactorial and could not be clarified enough yet. As BRVO is a disease that goes with thrombosis and inflammatory processes, inflammatory markers could help to predict the risk of BRVO. The aim of this study was to evaluate the association between neutrophil-lymphocyte ratio (NLR) and the BRVO.Materials and Methods: Forty-three patients with BRVO were included to this retrospective study. Forty age and sex-matched healthy volunteers were recruited as the control group. Demographic characteristics, white blood cell (WBC), neutrophil, lymphocyte, monocyte, platelet counts and NLR were recorded and compared between the patients and the control group.Results and Discussion: The mean WBC, neutrophil and NLR were significantly higher in the BRVO patients compared with control group (7.89±1.8fL vs 6.97±1.4fL, p=0.014, 4.85±1.4fL vs 4.01±0.9fL, p=0.002, 2.40±1.2 vs 1.87±0.5, p=0.026, respectively). There were no difference between two groups in terms of lymphocyte, monocyte and platelet counts (p=894, p=0.22, p=0.589, respevtively).Conclusion: NLR was higher in patients with BRVO and higher NLR may contribute to development of BRVO associated with systemic and/or local inflammation.International Journal of Human and Health Sciences Vol. 05 No. 04 October’21 Page: 499-502</jats:p
The effects of genistein supplementation on fructose induced insulin resistance, oxidative stress and inflammation.
- …
