136 research outputs found
Spatially Selective and Reversible Doping Control in Cuprate Films
We describe a reversible, spatially-controlled doping method for cuprate
films. The technique has been used to create superconductor-antiferromagnetic
insulator-superconductor (S-AFI-S) junctions and optimally doped
superconductor-underdoped superconductor-optimally doped superconductor
(OS-US-OS) cuprate structures. We demonstrate how the S-AFI-S structure can be
employed to reliably measure the transport properties of the antiferromagnetic
insulator region at cryogenic temperatures using the superconductors as
seamless electrical leads. We also discuss applied and fundamental issues which
may be addressed with the structures created with this doping method. Although
it is implemented on a cuprate film (YBa2Cu3O7-delta) in this work, the method
can also be applied to any mixed-valence transition metal oxide whose physical
properties are determined by oxygen content.Comment: 14 pages, 4 figure
Electron Spin-Lattice Relaxation of doped Yb3+ ions in YBa2Cu3Ox
The electron spin-lattice relaxation (SLR) times T1 of Yb3+‡ ions were
measured from the temperature dependence of electron spin resonance linewidth
in Y0.99Yb0.01Ba2Cu3Ox with different oxygen contents. Raman relaxation
processes dominate the electron SLR. Derived from the temperature dependence of
the SLR rate, the Debye temperature (Td) increases with the critical
temperature Tc and oxygen content x. Keywords: EPR; ESR; Electron spin-lattice
relaxation; Debye temperature; Critical temperatureComment: 5 Pages 4 Figure
Scaling in high-temperature superconductors
A Hartree approximation is used to study the interplay of two kinds of
scaling which arise in high-temperature superconductors, namely critical-point
scaling and that due to the confinement of electron pairs to their lowest
Landau level in the presence of an applied magnetic field. In the neighbourhood
of the zero-field critical point, thermodynamic functions scale with the
scaling variable , which differs from the variable
suggested by the gaussian approximation.
Lowest-Landau-level (LLL) scaling occurs in a region of high field surrounding
the upper critical field line but not in the vicinity of the zero-field
transition. For YBaCuO in particular, a field of at least 10 T is needed to
observe LLL scaling. These results are consistent with a range of recent
experimental measurements of the magnetization, transport properties and,
especially, the specific heat of high- materials.Comment: 22 pages + 1 figure appended as postscript fil
First-Order Vortex Lattice Melting and Magnetization of YBaCuO$_{7-\delta}
We present the first non-mean-field calculation of the magnetization
of YBaCuO both above and below the flux-lattice melting
temperature . The results are in good agreement with experiment as a
function of transverse applied field . The effects of fluctuations in both
order parameter and magnetic induction are included in the
Ginzburg-Landau free energy functional: fluctuates within the
lowest Landau level in each layer, while fluctuates uniformly according to
the appropriate Boltzmann factor. The second derivative is predicted to be negative throughout the vortex liquid state and
positive in the solid state. The discontinuities in entropy and magnetization
at melting are calculated to be per flux line per layer and
~emu~cm at a field of 50 kOe.Comment: 11 pages, 4 PostScript figures in one uuencoded fil
Critical-point scaling function for the specific heat of a Ginzburg-Landau superconductor
If the zero-field transition in high temperature superconductors such as
YBa_2Cu_3O_7-\delta is a critical point in the universality class of the
3-dimensional XY model, then the general theory of critical phenomena predicts
the existence of a critical region in which thermodynamic functions have a
characteristic scaling form. We report the first attempt to calculate the
universal scaling function associated with the specific heat, for which
experimental data have become available in recent years. Scaling behaviour is
extracted from a renormalization-group analysis, and the 1/N expansion is
adopted as a means of approximation. The estimated scaling function is
qualitatively similar to that observed experimentally, and also to the
lowest-Landau-level scaling function used by some authors to provide an
alternative interpretation of the same data. Unfortunately, the 1/N expansion
is not sufficiently reliable at small values of N for a quantitative fit to be
feasible.Comment: 20 pages; 4 figure
Fluctuation Study of the Specific Heat of MgB2
The specific heat of polycrystalline MgB has been measured with
high resolution ac calorimetry from 5 to 45 K at constant magnetic fields. The
excess specific heat above T is discussed in terms of Gaussian
fluctuations and suggests that MgB is a bulk superconductor with
Ginzburg-Landau coherence length \AA . The transition-width
broadening in field is treated in terms of lowest-Landau-level (LLL)
fluctuations. That analysis requires that \AA . The underestimate
of the coherence length in field, along with deviations from 3D LLL
predictions, suggest that there is an influence from the anisotropy of B
between the c-axis and the a-b plane.Comment: Phys. Rev. B 66, 134515 (2002
Temperature dependence of the EPR linewidth of Yb3+ - ions in Y0.99Yb0.01Ba2Cu3OX compounds: Evidence for an anomaly near TC
Electron paramagnetic resonance experiments on doped Yb3+ ions in YBaCuO
compounds with different oxygen contents have been made. We have observed the
strong temperature dependence of the EPR linewidth in the all investigated
samples caused by the Raman processes of spin-lattice relaxation. The
spin-lattice relaxation rate anomaly revealed near TC in the superconducting
species can be assigned to the phonon density spectrum changesComment: 10 pages, 4 figures Renewed versio
Frustrated kinetic energy, the optical sum rule, and the mechanism of superconductivity
The theory that the change of the electronic kinetic energy in a direction
perpendicular to the CuO-planes in high-temperature superconductors is a
substantial fraction of the condensation energy is examined. It is argued that
the consequences of this theory based on a rigorous -axis conductivity sum
rule are consistent with recent optical and penetration depth measurements.Comment: 4 pages (RevTeX) and 2 eps figure
Thermodynamic properties of excess-oxygen-doped La2CuO4.11 near a simultaneous transition to superconductivity and long-range magnetic order
We have measured the specific heat and magnetization {\it versus} temperature
in a single crystal sample of superconducting LaCuO and in a
sample of the same material after removing the excess oxygen, in magnetic
fields up to 15 T. Using the deoxygenated sample to subtract the phonon
contribution, we find a broad peak in the specific heat, centered at 50 K. This
excess specific heat is attributed to fluctuations of the Cu spins possibly
enhanced by an interplay with the charge degrees of freedom, and appears to be
independent of magnetic field, up to 15 T. Near the superconducting transition
(=0)= 43 K, we find a sharp feature that is strongly suppressed when
the magnetic field is applied parallel to the crystallographic c-axis. A model
for 3D vortex fluctuations is used to scale magnetization measured at several
magnetic fields. When the magnetic field is applied perpendicular to the
c-axis, the only observed effect is a slight shift in the superconducting
transition temperature.Comment: 8 pages, 8 figure
Low-Magnetic Field Critical Behavior in Strongly Type-II Superconductors
A new description is proposed for the low-field critical behavior of type-II
superconductors. The starting point is the Ginzburg-Landau theory in presence
of an external magnetic field H. A set of fictitious vortex variables and a
singular gauge transformation are used to rewrite a finite H Ginzburg-Landau
functional in terms of a complex scalar field of zero average vorticity. The
continuum limit of the transformed problem takes the form of an H = 0
Ginzburg-Landau functional for a charged field coupled to a fictitious `gauge'
potential which arises from long wavelength fluctuations in the background
liquid of field-induced vorticity. A possibility of a novel phase transition
involving zero vorticity degrees of freedom and formation of a uniform
condensate is suggested. A similarity to the superconducting [Higgs]
electrodynamics and the nematic-smectic-A transition in liquid crystals is
noted. The experimental situation is discussed.Comment: 19 pages RevTeX, one figure available by fax [email requests to
[email protected]], to appear in Physical Review B
- …
