2,558 research outputs found
Quasi-periodic pulsations in the gamma-ray emission of a solar flare
Quasi-periodic pulsations (QPPs) of gamma-ray emission with a period of about 40 s are found in a single loop X-class solar flare on 2005 January 1 at photon energies up to 2-6 MeV with the SOlar Neutrons and Gamma-rays (SONG) experiment aboard the CORONAS-F mission. The oscillations are also found to be present in the microwave emission detected with the Nobeyama Radioheliograph, and in the hard X-ray and low energy gamma-ray channels of RHESSI. Periodogram and correlation analysis shows that the 40 s QPPs of microwave, hard X-ray, and gamma-ray emission are almost synchronous in all observation bands. Analysis of the spatial structure of hard X-ray and low energy (80-225 keV) gamma-ray QPP with RHESSI reveals synchronous while asymmetric QPP at both footpoints of the flaring loop. The difference between the averaged hard X-ray fluxes coming from the two footpoint sources is found to oscillate with a period of about 13 s for five cycles in the highest emission stage of the flare. The proposed mechanism generating the 40 s QPP is a triggering of magnetic reconnection by a kink oscillation in a nearby loop. The 13 s periodicity could be produced by the second harmonics of the sausage mode of the flaring loop
Analytical relationship for the cranking inertia
The wave function of a spheroidal harmonic oscillator without spin-orbit
interaction is expressed in terms of associated Laguerre and Hermite
polynomials. The pairing gap and Fermi energy are found by solving the BCS
system of two equations. Analytical relationships for the matrix elements of
inertia are obtained function of the main quantum numbers and potential
derivative. They may be used to test complex computer codes one should develop
in a realistic approach of the fission dynamics. The results given for the
Pu nucleus are compared with a hydrodynamical model. The importance of
taking into account the correction term due to the variation of the occupation
number is stressed.Comment: 12 pages, 4 figure
Schwinger Representation for the Symmetric Group: Two explicit constructions for the Carrier Space
We give two explicit construction for the carrier space for the Schwinger
representation of the group . While the first relies on a class of
functions consisting of monomials in antisymmetric variables, the second is
based on the Fock space associated with the Greenberg algebra.Comment: Latex, 6 page
Synthesis of novel and potent vorapaxar analogues
Vorapaxar is a first-in-class PAR-1 antagonistic drug based on the ent-himbacine scaffold. Detailed in this article are enantioselective and racemic routes to various novel vorapaxar analogues. Biological testing revealed these compounds to have moderate to excellent potencies against PAR-1 with the most potent analogue demonstrating an IC50 of 27 nM
Quasi-periodic pulsations in the gamma-ray emission of a solar flare
Copyright © 2010 American Astronomical Society / IOP PublishingQuasi-periodic pulsations (QPPs) of gamma-ray emission with a period of about 40 s are found in a single loop X-class solar flare on 2005 January 1 at photon energies up to 2-6 MeV with the SOlar Neutrons and Gamma-rays (SONG) experiment aboard the CORONAS-F mission. The oscillations are also found to be present in the microwave emission detected with the Nobeyama Radioheliograph, and in the hard X-ray and low energy gamma-ray channels of RHESSI. Periodogram and correlation analysis shows that the 40 s QPPs of microwave, hard X-ray, and gamma-ray emission are almost synchronous in all observation bands. Analysis of the spatial structure of hard X-ray and low energy (80-225 keV) gamma-ray QPP with RHESSI reveals synchronous while asymmetric QPP at both footpoints of the flaring loop. The difference between the averaged hard X-ray fluxes coming from the two footpoint sources is found to oscillate with a period of about 13 s for five cycles in the highest emission stage of the flare. The proposed mechanism generating the 40 s QPP is a triggering of magnetic reconnection by a kink oscillation in a nearby loop. The 13 s periodicity could be produced by the second harmonics of the sausage mode of the flaring loop
Generalized Involution Models for Wreath Products
We prove that if a finite group has a generalized involution model, as
defined by Bump and Ginzburg, then the wreath product also has a
generalized involution model. This extends the work of Baddeley concerning
involution models for wreath products. As an application, we construct a
Gelfand model for wreath products of the form with abelian, and
give an alternate proof of a recent result due to Adin, Postnikov, and Roichman
describing a particularly elegant Gelfand model for the wreath product \ZZ_r
\wr S_n. We conclude by discussing some notable properties of this
representation and its decomposition into irreducible constituents, proving a
conjecture of Adin, Roichman, and Postnikov's.Comment: 29 page
Why 'scaffolding' is the wrong metaphor : the cognitive usefulness of mathematical representations.
The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least (and plausibly for others), scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the right track with his ‘enculturation’ view of mathematical cognition. Moreover, these examples allow us to elaborate his remarks on the uniqueness of mathematical representations and their role in the emergence of new thoughts.Peer reviewe
Identification of an active metabolite of PAR-1 antagonist RWJ-58259 and synthesis of analogues to enhance its metabolic stability
The discontinuation of PAR-1 antagonist RWJ-58259 beyond use as a biological probe is most likely due to it's short half-life in vivo. However, retention of significant in vivo activity beyond the point where most of the RWJ-58259 had been consumed implies the generation of an active metabolite. Herein we describe the biological activity of a predicted metabolite of RWJ-58259 and the synthesis of analogues designed to enhance the metabolic stability of RWJ-58259
Quasi-Periodic Pulsations in Solar Flares: new clues from the Fermi Gamma-Ray Burst Monitor
In the last four decades it has been observed that solar flares show
quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest,
i.e. gamma-ray, part of the electromagnetic spectrum. To this day, it is still
unclear which mechanism creates such QPPs. In this paper, we analyze four
bright solar flares which show compelling signatures of quasi-periodic behavior
and were observed with the Gamma-Ray Burst Monitor (\gbm) onboard the Fermi
satellite. Because GBM covers over 3 decades in energy (8 keV to 40 MeV) it can
be a key instrument to understand the physical processes which drive solar
flares. We tested for periodicity in the time series of the solar flares
observed by GBM by applying a classical periodogram analysis. However, contrary
to previous authors, we did not detrend the raw light curve before creating the
power spectral density spectrum (PSD). To assess the significance of the
frequencies we made use of a method which is commonly applied for X-ray
binaries and Seyfert galaxies. This technique takes into account the underlying
continuum of the PSD which for all of these sources has a P(f) ~ f^{-\alpha}
dependence and is typically labeled red-noise. We checked the reliability of
this technique by applying it to a solar flare which was observed by the Reuven
Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) which contains, besides
any potential periodicity from the Sun, a 4 s rotational period due to the
rotation of the spacecraft around its axis. While we do not find an intrinsic
solar quasi-periodic pulsation we do reproduce the instrumental periodicity.
Moreover, with the method adopted here, we do not detect significant QPPs in
the four bright solar flares observed by GBM. We stress that for the purpose of
such kind of analyses it is of uttermost importance to appropriately account
for the red-noise component in the PSD of these astrophysical sources.Comment: accepted by A&
- …
