977 research outputs found
Atmospheric response to observed intraseasonal tropical sea surface temperature anomalies
The major tropical convective and circulation features of the intraseasonal or Madden-Julian Oscillation (MJO) are simulated as a passive response to observed MJO sea surface temperature (SST) anomalies in an atmospheric general circulation model (AGCM), strengthening the case for ocean-atmosphere interactions being central to MJO dynamics. However, the magnitude of the surface fluxes diagnosed from the MJO cycle in the AGCM, that would feed back onto the ocean in a coupled system, are much weaker than in observations. The phasing of the convective-dynamical model response to the MJO SST anomalies and the associated surface flux anomalies is too fast compared to observations of the (potentially) coupled system, and would act to damp the SST anomalies
Recommended from our members
The role of the basic state in the ENSO-monsoon relationship and implications for predictability
The impact of systematic model errors on a coupled simulation of the Asian Summer monsoon and its interannual variability is studied. Although the mean monsoon climate is reasonably well captured, systematic errors in the equatorial Pacific mean that the monsoon-ENSO teleconnection is rather poorly represented in the GCM. A system of ocean-surface heat flux adjustments is implemented in the tropical Pacific and Indian Oceans in order to reduce the systematic biases. In this version of the GCM, the monsoon-ENSO teleconnection is better simulated, particularly the lag-lead relationships in which weak monsoons precede the peak of El Nino. In part this is related to changes in the characteristics of El Nino, which has a more realistic evolution in its developing phase. A stronger ENSO amplitude in the new model version also feeds back to further strengthen the teleconnection. These results have important implications for the use of coupled models for seasonal prediction of systems such as the monsoon, and suggest that some form of flux correction may have significant benefits where model systematic error compromises important teleconnections and modes of interannual variability
Recommended from our members
The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. I: Mean response and interannual variability
The impact of doubled CO2 concentration on the Asian summer monsoon is studied using a coupled ocean-atmosphere model. Both the mean seasonal precipitation and interannual monsoon variability are found to increase in the future climate scenario presented. Systematic biases in current climate simulations of the coupled system prevent accurate representation of the monsoon-ENSO teleconnection, of prime importance for seasonal prediction and for determining monsoon interannual variability. By applying seasonally varying heat flux adjustments to the tropical Pacific and Indian Ocean surface in the future climate simulation, some assessment can be made of the impact of systematic model biases on future climate predictions. In simulations where the flux adjustments are implemented, the response to climate change is magnified, with the suggestion that systematic biases may be masking the true impact of increased greenhouse gas forcing. The teleconnection between ENSO and the Asian summer monsoon remains robust in the future climate, although the Indo-Pacific takes on more of a biennial character for long periods of the flux-adjusted simulation. Assessing the teleconnection across interdecadal timescales shows wide variations in its amplitude, despite the absence of external forcing. This suggests that recent changes in the observed record cannot be distinguished from internal variations and as such are not necessarily related to climate change
Heavy resistance training in hypoxia enhances 1RM squat performance
Purpose: To determine if heavy resistance training in hypoxia (IHRT) is more effective at improving strength, power, and increasing lean mass than the same training in normoxia. Methods: A pair-matched, placebo-controlled study design included 20 resistance-trained participants assigned to IHRT (FIO2 0.143) or placebo (FIO2 0.20), (n = 10 per group). Participants were matched for strength and training. Both groups performed 20 sessions over 7 weeks either with IHRT or placebo. All participants were tested for 1RM, 20-m sprint, body composition, and countermovement jump pre-, mid-, and post-training and compared via magnitude-based inferences. Presentation of Results: Groups were not clearly different for any test at baseline. Training improved both absolute (IHRT: 13.1 ± 3.9%, effect size (ES) 0.60, placebo 9.8 ± 4.7%, ES 0.31) and relative 1RM (IHRT: 13.4 ± 5.1%, ES 0.76, placebo 9.7 ± 5.3%, ES 0.48) at mid. Similarly, at post both groups increased absolute (IHRT: 20.7 ± 7.6%, ES 0.74, placebo 14.1 ± 6.0%, ES 0.58) and relative 1RM (IHRT: 21.6 ± 8.5%, ES 1.08, placebo 13.2 ± 6.4%, ES 0.78). Importantly, the change in IHRT was greater than placebo at mid for both absolute [4.4% greater change, 90% Confidence Interval (CI) 1.0:8.0%, ES 0.21, and relative strength (5.6% greater change, 90% CI 1.0:9.4%, ES 0.31 (relative)]. There was also a greater change for IHRT at post for both absolute (7.0% greater change, 90% CI 1.3:13%, ES 0.33), and relative 1RM (9.2% greater change, 90% CI 1.6:14.9%, ES 0.49). Only IHRT increased countermovement jump peak power at Post (4.9%, ES 0.35), however the difference between IHRT and placebo was unclear (2.7, 90% CI –2.0:7.6%, ES 0.20) with no clear differences in speed or body composition throughout. Conclusion: Heavy resistance training in hypoxia is more effective than placebo for improving absolute and relative strength
Ocean Rossby waves as a triggering mechanism for primary Madden-Julian events
The Madden–Julian Oscillation (MJO) is sporadic, with episodes of cyclical activity interspersed with inactive periods. However, it remains unclear what may trigger a Madden–Julian (MJ) event which is not immediately preceded by any MJO activity: a ‘primary’ MJ event. A combination of case-studies and composite analysis is used to examine the extent to which the triggering of primary MJ events might occur in response to ocean dynamics. The case-studies show that such events can be triggered by the arrival of a downwelling oceanic equatorial Rossby wave, which is shown to be associated with a deepening of the mixed layer and positive sea-surface temperature (SST) anomalies of the order of 0.5–1 °C. These SST anomalies are not attributable to forcing by surface fluxes which are weak for the case-studies analysed. Furthermore, composite analysis suggests that such forcing is consistently important for triggering primary events. The relationship is much weaker for successive events, due to the many other triggering mechanisms which operate during periods of cyclical MJO activity. This oceanic feedback mechanism is a viable explanation for the sporadic and broadband nature of the MJO. Additionally, it provides hope for forecasting MJ events during periods of inactivity, when MJO forecasts generally exhibit low skill
Fast and slow Kelvin waves in the Madden-Julian Oscillation of a GCM
The structure of the Madden-Julian Oscillation (MJO) in an 1800-day integration of the Hadley Centre Unified Model was analysed, and interpreted within a Kelvin wave framework. The model was forced with constant equinoctial (March) boundary conditions so that a ``clean'' MJO signal could be separated from the effects of the seasonal cycle and forced interannual variability. The simulated MJO was fairly realistic in terms of its large-scale spatial structure and propagation characteristics, although its period of 30 days (corresponding to an average phase speed of 15 \mps) was shorter than that observed. The signal in deep convection was less coherent than in observations, and appeared to move eastward as a sequence of discrete convective anomalies, rather than by a smooth eastward propagation. Both ``fast'' and ``slow'' equatorial Kelvin waves appeared to play an important role in the eastward propagation of the simulated MJO. Enhanced convection over the Indian Ocean was associated with a ``fast'' equatorial Kelvin wave that propagated eastward at 55 m s-1 over the Pacific. On reaching the west coast of South America, a component of this Kelvin wave propagated northward and southward as a trapped wave along the mountain ranges of Central America and the Andes, in agreement with observations. The anomalous surface easterlies over the tropical eastern Pacific associated with this fast Kelvin wave enhanced the climatological mean easterlies and led to positive convective anomalies over the eastern Pacific consistent with the WISHE mechanism. However, WISHE was not able to account for the eastward development of the convective anomalies over the Indian Ocean/western Pacific region. By splitting the equatorial divergence anomalies of the simulated MJO into their du/dx and dv/dy components, the role of Kelvin wave dynamics in the ``slow'' (15 m s-1) average eastward propagation of the simulated MJO was examined. Although the two components were of comparable magnitude, the \dudx\ component exhibited a pronounced eastward propagation which tended to be disrupted by the \dvdy\ component, thus supporting the paradigm of an underlying, but strongly modified, Kelvin wave mechanism
Recommended from our members
The role of air–sea coupling in the simulation of the Madden–Julian oscillation in the Hadley Centre model
The role of air–sea coupling in the simulation of the Madden–Julian oscillation (MJO) is explored using two configurations of the Hadley Centre atmospheric model (AGCM), GA3.0, which differ only in F, a parameter controlling convective entrainment and detrainment. Increasing F considerably improves deficient MJO-like variability in the Indian and Pacific Oceans, but variability in and propagation through the Maritime Continent remains weak. By coupling GA3.0 in the tropical Indo-Pacific to a boundary-layer ocean model, KPP, and employing climatological temperature corrections, well resolved air–sea interactions are simulated with limited alterations to the mean state. At default F, when GA3.0 has a poor MJO, coupling produces a stronger MJO with some eastward propagation, although both aspects remain
deficient. These results agree with previous sensitivity studies using AGCMs with poor variability. At higher F, coupling does not affect MJO amplitude but enhances propagation through the Maritime Continent, resulting in an MJO that resembles observations. A sensitivity experiment with coupling in only the Indian Ocean reverses these improvements, suggesting coupling in the Maritime Continent and West Pacific is critical for propagation. We hypothesise that for AGCMs with a poor MJO, coupling provides a “crutch” to artificially augment
MJO-like activity through high-frequency SST anomalies.
In related experiments, we employ the KPP framework to analyse the impact of air–sea interactions in the fully coupled GA3.0, which at default F shows a similar MJO to uncoupled GA3.0. This is due to compensating effects: an
improvement from coupling and a degradation from mean-state errors. Future studies on the role of coupling should carefully separate these effects
Recommended from our members
Using a case-study approach to improve the Madden-Julian oscillation in the Hadley Centre model
In its default configuration, the Hadley Centre climate model (GA2.0) simulates roughly one-half the observed level of Madden–Julian oscillation activity, with MJO events often lasting fewer than seven days.
We use initialised, climate-resolution hindcasts to examine the sensitivity of the GA2.0 MJO to a range of changes in sub-grid parameterisations and model configurations. All 22 changes are tested for two cases during the Years of Tropical Convection. Improved skill comes only from (a) disabling vertical momentum transport by convection and (b) increasing mixing entrainment and detrainment for deep and mid-level convection. These changes are subsequently tested in a further 14 hindcast cases; only (b) consistently improves MJO skill, from 12 to 22 days. In a 20-year integration, (b) produces near-observed levels of MJO activity, but propagation through the Maritime Continent remains weak.
With default settings, GA2.0 produces precipitation too readily, even in anomalously dry columns. Implementing (b) decreases the efficiency of convection, permitting instability to build during the suppressed MJO phase and producing a more favourable environment for the active phase. The distribution of daily rain rates is more consistent with satellite data; default entrainment produces 6–12 mm/day too frequently. These results are consistent with recent studies showing that greater sensitivity of convection to moisture improves the representation of the MJO
Recommended from our members
Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: the application of process-based diagnostics
In Part I of this study it was shown that moving from a moisture-convergent- to
a relative-humidity-dependent organized entrainment rate in the formulation for
deep convection was responsible for significant advances in the simulation of the
Madden – Julian Oscillation (MJO) in the ECMWF model. However, the application
of traditional MJO diagnostics were not adequate to understand why changing the
control on convection had such a pronounced impact on the representation of the
MJO.
In this study a set of process-based diagnostics are applied to the hindcast
experiments described in Part I to identify the physical mechanisms responsible for
the advances in MJO simulation. Increasing the sensitivity of the deep convection
scheme to environmental moisture is shown to modify the relationship between
precipitation and moisture in the model. Through dry-air entrainment, convective
plumes ascending in low-humidity environments terminate lower in the atmosphere.
As a result, there is an increase in the occurrence of cumulus congestus, which acts
to moisten the mid troposphere. Due to the modified precipitation – moisture
relationship more moisture is able to build up, which effectively preconditions the
tropical atmosphere for the t ransition t o d eep convection. R esults from this study
suggest that a tropospheric moisture control on convection is key to simulating
the interaction between the convective heating and the large-scale wave forcing
associated with the MJO
- …
