1,550 research outputs found
Solid-liquid phase coexistence and structural transitions in palladium clusters
We use molecular dynamics with an embedded atom potential to study the
behavior of palladium nanoclusters near the melting point in the microcanonical
ensemble. We see transitions from both fcc and decahedral ground state
structures to icosahedral structures prior to melting over a range of cluster
sizes. In all cases this transition occurs during solid-liquid phase
coexistence and the mechanism for the transition appears to be fluctuations in
the molten fraction of the cluster and subsequent recrystallization into the
icosahedral structure.Comment: 8 pages, 6 figure
Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism
The freezing behavior of gold nanoclusters was studied by employing molecular
dynamics simulations based on a semi-empirical embedded-atom method.
Investigations of the gold nanoclusters revealed that, just after freezing,
ordered nano-surfaces with a fivefold symmetry were formed with interior atoms
remaining in the disordered state. Further lowering of temperatures induced
nano-crystallization of the interior atoms that proceeded from the surface
towards the core region, finally leading to an icosahedral structure. These
dynamic processes explain why the icosahedral cluster structure is dominantly
formed in spite of its energetic metastability.Comment: 9 pages, 4 figures(including 14 eps-files
Savings Accounts and the Life-Cycle Approach to Social Insurance
Using Danish data, we find that about three fourths of the taxes levied to finance public transfers actually finance benefits that do not redistribute between people but redistribute income over the life cycle of individual taxpayers. This provides a rationale for financing part of social insurance via mandatory individual savings accounts. An account system that offers liquidity insurance and a lifetime income guarantee helps to alleviate the dilemma between insurance and incentives. To illustrate this, we analyse a specific proposal for reform of the Danish system of social insurance, involving the use of individual accounts. We estimate how the reform would affect the distribution of lifetime incomes, the public budget, and economic efficiency. Our analysis suggests that, even with conservative assumptions regarding labor supply elasticities, the proposed reform would generate a Pareto improvement and would imply only a minor increase in the inequality of lifetime income distribution.social insurance; individual accounts; lifetime income distribution
Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles
The thermal behavior of free and alumina-supported iron-carbon nanoparticles
is investigated via molecular dynamics simulations, in which the effect of the
substrate is treated with a simple Morse potential fitted to ab initio data. We
observe that the presence of the substrate raises the melting temperature of
medium and large nanoparticles ( = 0-0.16, = 80-1000, non-
magic numbers) by 40-60 K; it also plays an important role in defining the
ground state of smaller Fe nanoparticles ( = 50-80). The main focus of our
study is the investigation of Fe-C phase diagrams as a function of the
nanoparticle size. We find that as the cluster size decreases in the
1.1-1.6-nm-diameter range the eutectic point shifts significantly not only
toward lower temperatures, as expected from the Gibbs-Thomson law, but also
toward lower concentrations of C. The strong dependence of the maximum C
solubility on the Fe-C cluster size may have important implications for the
catalytic growth of carbon nanotubes by chemical vapor deposition.Comment: 13 pages, 11 figures, higher quality figures can be seen in article 9
at http://alpha.mems.duke.edu/wahyu
Charge ordering and chemical potential shift in LaSrNiO studied by photoemission spectroscopy
We have studied the chemical potential shift in LaSrNiO and
the charge ordering transition in LaSrNiO by
photoemission spectroscopy. The result shows a large ( 1 eV/hole)
downward shift of the chemical potential with hole doping in the high-doping
regime ( 0.33) while the shift is suppressed in the low-doping
regime ( 0.33). This suppression is attributed to a
segregation of doped holes on a microscopic scale when the hole concentration
is lower than . In the sample, the
photoemission intensity at the chemical potential vanishes below the charge
ordering transition temperature 240 K.Comment: 5 pages, 4 figure
Chemical Potential Shift in NdCeCuO: Contrasting Behaviors of the Electron- and Hole-Doped Cuprates
We have studied the chemical potential shift in the electron-doped
superconductor NdCeCuO by precise measurements of
core-level photoemission spectra. The result shows that the chemical potential
monotonously increases with electron doping, quite differently from
LaSrCuO, where the shift is suppressed in the underdoped
region.
If the suppression of the shift in LaSrCuO is attributed
to strong stripe fluctuations, the monotonous increase of the chemical
potential is consistent with the absence of stripe fluctuations in
NdCeCuO. The chemical potential jump between
NdCuO and LaCuO is found to be much smaller than the
optical band gaps.Comment: 4 pages, 5 figure
One-dimensional metallic behavior of the stripe phase in LaSrCuO
Using an exact diagonalization method within the dynamical mean-field theory
we study stripe phases in the two-dimensional Hubbard model. We find a
crossover at doping from diagonal stripes to vertical
site-centered stripes with populated domain walls, stable in a broad range of
doping, . The calculated chemical potential shift and the doping dependence of the magnetic incommensurability are in
quantitative agreement with the experimental results for doped
LaSrCuO. The electronic structure shows one-dimensional
metallic behavior along the domain walls, and explains the suppression of
spectral weight along the Brillouin zone diagonal.Comment: 4 pages, 4 figure
- …
