282 research outputs found
Sheath parameters for non-Debye plasmas: simulations and arc damage
This paper describes the surface environment of the dense plasma arcs that
damage rf accelerators, tokamaks and other high gradient structures. We
simulate the dense, non-ideal plasma sheath near a metallic surface using
Molecular Dynamics (MD) to evaluate sheaths in the non-Debye region for high
density, low temperature plasmas. We use direct two-component MD simulations
where the interactions between all electrons and ions are computed explicitly.
We find that the non-Debye sheath can be extrapolated from the Debye sheath
parameters with small corrections. We find that these parameters are roughly
consistent with previous PIC code estimates, pointing to densities in the range
. The high surface fields implied by these
results could produce field emission that would short the sheath and cause an
instability in the time evolution of the arc, and this mechanism could limit
the maximum density and surface field in the arc. These results also provide a
way of understanding how the "burn voltage" of an arc is generated, and the
relation between self sputtering and the burn voltage, while not well
understood, seems to be closely correlated. Using these results, and equating
surface tension and plasma pressure, it is possible to infer a range of plasma
densities and sheath potentials from SEM images of arc damage. We find that the
high density plasma these results imply and the level of plasma pressure they
would produce is consistent with arc damage on a scale 100 nm or less, in
examples where the liquid metal would cool before this structure would be lost.
We find that the sub-micron component of arc damage, the burn voltage, and
fluctuations in the visible light production of arcs may be the most direct
indicators of the parameters of the dense plasma arc, and the most useful
diagnostics of the mechanisms limiting gradients in accelerators.Comment: 8 pages, 16 figure
Modeling Vacuum Arcs
We are developing a model of vacuum arcs. This model assumes that arcs
develop as a result of mechanical failure of the surface due to Coulomb
explosions, followed by ionization of fragments by field emission and the
development of a small, dense plasma that interacts with the surface primarily
through self sputtering and terminates as a unipolar arc capable of producing
breakdown sites with high enhancement factors. We have attempted to produce a
self consistent picture of triggering, arc evolution and surface damage. We are
modeling these mechanisms using Molecular Dynamics (mechanical failure, Coulomb
explosions, self sputtering), Particle-In-Cell (PIC) codes (plasma evolution),
mesoscale surface thermodynamics (surface evolution), and finite element
electrostatic modeling (field enhancements). We can present a variety of
numerical results. We identify where our model differs from other descriptions
of this phenomenon.Comment: 4 pages, 5 figure
Crater formation by fast ions: comparison of experiment with Molecular Dynamics simulations
An incident fast ion in the electronic stopping regime produces a track of
excitations which can lead to particle ejection and cratering. Molecular
Dynamics simulations of the evolution of the deposited energy were used to
study the resulting crater morphology as a function of the excitation density
in a cylindrical track for large angle of incidence with respect to the surface
normal. Surprisingly, the overall behavior is shown to be similar to that seen
in the experimental data for crater formation in polymers. However, the
simulations give greater insight into the cratering process. The threshold for
crater formation occurs when the excitation density approaches the cohesive
energy density, and a crater rim is formed at about six times that energy
density. The crater length scales roughly as the square root of the electronic
stopping power, and the crater width and depth seem to saturate for the largest
energy densities considered here. The number of ejected particles, the
sputtering yield, is shown to be much smaller than simple estimates based on
crater size unless the full crater morphology is considered. Therefore, crater
size can not easily be used to estimate the sputtering yield.Comment: LaTeX, 7 pages, 5 EPS figures. For related figures/movies, see:
http://dirac.ms.virginia.edu/~emb3t/craters/craters.html New version uploaded
5/16/01, with minor text changes + new figure
Cluster-induced crater formation
Using molecular-dynamics simulation, we study the crater volumes induced by
energetic impacts ( km/s) of projectiles containing up to N=1000
atoms. We find that for Lennard-Jones bonded material the crater volume depends
solely on the total impact energy . Above a threshold \Eth, the volume
rises linearly with . Similar results are obtained for metallic materials.
By scaling the impact energy to the target cohesive energy , the crater
volumes become independent of the target material. To a first approximation,
the crater volume increases in proportion with the available scaled energy,
. The proportionality factor is termed the cratering efficiency and
assumes values of around 0.5.Comment: 9 page
Development of an advanced water filtering system based on graphene irradiated by gas cluster and highly charged ions
Effects of a heavy low energy ion bombardment
of various materials are explored for the purposes of
creating new materials that have advanced
properties. In this study, features of the defects’
formation in the samples of graphene, graphene
oxide and silicon by Ar cluster ions irradiation are
given..
A Fluid Dynamics Calculation of Sputtering from a Cylindrical Thermal Spike
The sputtering yield, Y, from a cylindrical thermal spike is calculated using
a two dimensional fluid dynamics model which includes the transport of energy,
momentum and mass. The results show that the high pressure built-up within the
spike causes the hot core to perform a rapid expansion both laterally and
upwards. This expansion appears to play a significant role in the sputtering
process. It is responsible for the ejection of mass from the surface and causes
fast cooling of the cascade. The competition between these effects accounts for
the nearly linear dependence of with the deposited energy per unit depth
that was observed in recent Molecular Dynamics simulations. Based on this we
describe the conditions for attaining a linear yield at high excitation
densities and give a simple model for this yield.Comment: 10 pages, 9 pages (including 9 figures), submitted to PR
Energy saving technologies of advanced membranes for water desalination
Actuation of fluid flow in nanochannels by surface and volume acoustic wave (SAW,
VAW) propagation were studied. Increase of infiltration rate of fluid flow through porous media,
fabrication of Labs-on-a-Chip (LOC), fast analysis of environmental pollution in field conditions using
micro- or even nanoscopic amount of samples, in pumping gases and liquids through the channels with
diameters as small as 1-10 nm and 1-10 цш were addressed
Computational problems in modeling arcs
We explore the reasons why there seems to be no common model for vacuum arcs, in spite of the importance of the field and the level of effort expended over more than one hundred years
- …
