259 research outputs found

    Overview of Issues Raised at the IUI Seminar 'Capital: its Value, its Rate of Return and its Productivity'

    Full text link

    Enhanced Symmetries and the Ground State of String Theory

    Get PDF
    The ground state of string theory may lie at a point of ``maximally enhanced symmetry", at which all of the moduli transform under continuous or discrete symmetries. This hypothesis, along with the hypotheses that the theory at high energies has N=1 supersymmetry and that the gauge couplings are weak and unified, has definite consequences for low energy physics. We describe these, and offer some suggestions as to how these assumptions might be compatible.Comment: harvmac, 18 page

    On rolling, tunneling and decaying in some large N vector models

    Full text link
    Various aspects of time-dependent processes are studied within the large N approximation of O(N) vector models in three dimensions. These include the rolling of fields, the tunneling and decay of vacua. We present an exact solution for the quantum conformal case and find a solution for more general potentials when the total change of the value of the field is small. Characteristic times are found to be shorter when the time dependence of the field is taken into account in constructing the exact large N effective potentials. We show that the different approximations yield the same answers in the regions of the overlap of the validity. A numerical solution of this potential reveals a tunneling in which the bubble that separates the true vacuum from the false one is thick

    Exotic Non-Supersymmetric Gauge Dynamics from Supersymmetric QCD

    Get PDF
    We extend Seiberg's qualitative picture of the behavior of supersymmetric QCD to nonsupersymmetric models by adding soft supersymmetry breaking terms. In this way, we recover the standard vacuum of QCD with NfN_f flavors and NcN_c colors when Nf<NcN_f < N_c. However, for NfNcN_f \geq N_c, we find new exotic states---new vacua with spontaneously broken baryon number for Nf=NcN_f = N_c, and a vacuum state with unbroken chiral symmetry for Nf>NcN_f > N_c. These exotic vacua contain massless composite fermions and, in some cases, dynamically generated gauge bosons. In particular Seiberg's electric-magnetic duality seems to persist also in the presence of (small) soft supersymmetry breaking. We argue that certain, specially tailored, lattice simulations may be able to detect the novel phenomena. Most of the exotic behavior does not survive the decoupling limit of large SUSY breaking parameters.Comment: 36 pages, latex + 2 figures (uuencoded ps

    Some Explorations in Holomorphy

    Get PDF
    In supersymmetric theories, one can obtain striking results and insights by exploiting the fact that the superpotential and the gauge coupling function are holomorphic functions of the model parameters. The precise meaning of this holomorphy is subtle, and has been explained most clearly by Shifman and Vainshtein, who have stressed the role of the Wilsonian effective action. In this note, we elaborate on the Shifman-Vainshtein program, applying it to examples in grand unification, supersymmetric QCD and string theory. We stress that among the ``model parameters" are the cutoffs used to define the Wilsonian action itself, and that generically these must be defined in a field-dependent manner to obtain holomorphic results.Comment: (26 pages and 2 figures as one uuencoded PostScript file) SCIPP 94/11. Important references added; typos correcte

    Towards N=1 Super-Yang-Mills on the Lattice

    Get PDF
    We consider the lattice regularization of N=1 supersymmetric Yang--Mills theory with Wilson fermions. This formulation breaks supersymmetry at any finite lattice spacing; we discuss how Ward identities can be used to define a supersymmetric continuum limit, which coincides with the point where the gluino becomes massless. As a first step towards the understanding of the zero gluino-mass limit, we present results on the quenched low-lying spectrum of SU(2) N=1 Super-Yang--Mills, at β=2.6\beta=2.6 on a V=163×32V=16^3 \times 32 lattice, in the OZI approximation. Our results, in spite of the quenched and OZI approximations, are in remarkable agreement with theoretical predictions in the supersymmetric theory, for the states with masses which are not expected to get a large contribution from fermion loops.Comment: 25 Latex pages, 5 figure
    corecore