309 research outputs found
Eating, Drinking, Living, Dying and Decaying Soft Robots
Soft robotics opens up a whole range of possibilities that go far beyond conventional rigid and electromagnetic robotics. New smart materials and new design and modelling methodologies mean we can start to replicate the operations and functionalities of biological organisms, most of which exploit softness as a critical component. These range from mechanical responses, actuation principles and sensing capabilities. Additionally, the homeostatic operations of organisms can be exploited in their robotic counterparts. We can, in effect, start to make robotic organisms, rather than just robots. Important new capabilities include the fabrication of robots from soft bio-polymers, the ability to drive the robot from bio-energy scavenged from the environment, and the degradation of the robot at the end of its life. The robot organism therefore becomes an entity that lives, dies, and decays in the environment, just like biological organisms. In this chapter we will examine how soft robotics have the potential to impact upon pressing environmental pollution, protection and remediation concerns
Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column
© 2016 Walter et al. Background: The microbial fuel cell (MFC) is a technology in which microorganisms employ an electrode (anode) as a solid electron acceptor for anaerobic respiration. This results in direct transformation of chemical energy into electrical energy, which in essence, renders organic wastewater into fuel. Amongst the various types of organic waste, urine is particularly interesting since it is the source of 75 % of the nitrogen present in domestic wastewater despite only accounting for 1 % of the total volume. However, there is a persistent problem for efficient MFC scale-up, since the higher the surface area of electrode to volume ratio, the higher the volumetric power density. Hence, to reach usable power levels for practical applications, a plurality of MFC units could be connected together to produce higher voltage and current outputs; this can be done by combinations of series/parallel connections implemented both horizontally and vertically as a stack. This plurality implies that the units have a simple design for the whole system to be cost-effective. The goal of this work was to address the built configuration of these multiple MFCs into stacks used for treating human urine. Results: We report a novel, membraneless stack design using ceramic plates, with fully submerged anodes and partially submerged cathodes in the same urine solution. The cathodes covered the top of each ceramic plate whilst the anodes, were on the lower half of each plate, and this would constitute a module. The MFC elements within each module (anode, ceramic, and cathode) were connected in parallel, and the different modules connected in series. This allowed for the self-stratification of the collective environment (urine column) under the natural activity of the microbial consortia thriving in the system. Two different module sizes were investigated, where one module (or box) had a footprint of 900 mL and a larger module (or box) had a footprint of 5000 mL. This scaling-up increased power but did not negatively affect power density (≈12 W/m3), a factor that has proven to be an obstacle in previous studies. Conclusion: The scaling-up approach, with limited power-density losses, was achieved by maintaining a plurality of microenvironments within the module, and resulted in a simple and robust system fuelled by urine. This scaling-up approach, within the tested range, was successful in converting chemical energy in urine into electricity
Microbial fuel cell stack performance enhancement through carbon veil anode modification with activated carbon powder
The chemical energy contained in urine can be efficiently extracted into direct electricity by Microbial Fuel Cell stacks to reach usable power levels for practical implementation and a decentralised power source in remote locations. Herein, a novel type of the anode electrode was developed using powdered activated carbon (PAC) applied onto the carbon fibre scaffold in the ceramic MFC stack to achieve superior electrochemical performance during 500 days of operation. The stack equipped with modified anodes (MF-CV) produced up to 37.9 mW (21.1 W m?3) in comparison to the control (CV) that reached 21.4 mW (11.9 W m?3) showing 77% increase in power production. The novel combination of highly porous activated carbon particles applied onto the conductive network of carbon fibres promoted simultaneously electrocatalytic activity and increased surface area, resulting in excellent power output from the MFC stack as well as higher treatment rate. Considering the low cost and simplicity of the material preparation, as well as the outstanding electrochemical activity during long term operation, the resulting modification provides a promising anode electrocatalyst for high-performance MFC stacks to enhance urine and waste treatment for the purpose of future scale-up and technology implementation as an applied off-grid energy source
The dawn of biodegradable robots
Robotics is a field that is not normally associated with green technology or sustainability. Robots are generally constructed using materials that are non-biodegradable, toxic and expensive. These factors can limit the potential uses that an artificial agent might have, especially if operation is required outside and away from where humans live. Things are further complicated when considering the robot’s power supply.In most cases, batteries are used that will inevitably run out and require recharging from charging stations.Imagine then, an environmentally friendly robot, one that can safely roam a targeted area whether that is within agricultural fields, rain forests or remote jungles. Movement would not be random but with a preset purpose built-in perhaps to identify pests, clean up human-made waste and generate electricity from it, or simply monitor/sense environmental conditions
Investigation of ceramic MFC stacks for urine energy extraction
© 2018 The Authors Two ceramic stacks, terracotta (t-stack) and mullite (m-stack), were developed to produce energy when fed with neat undiluted urine. Each stack consisted of twelve identical microbial fuel cells (MFCs) which were arranged in cascades and tested under different electrical configurations. Despite voltage reversal, the m-stack produced a maximum power of 800 μW whereas the t-stack produced a maximum of 520 μW after 62.6 h of operation. Moreover, during the operation, both systems were subject to blockage possibly due to struvite. To the Authors' best knowledge, this is the first time that such a phenomenon in ceramic MFC membranes is shown to be the direct result of sub-optimal performance, which confirms the hypothesis that ceramic membranes can continue operating long-term, if the MFCs produce maximum power (high rate of e− transfer). Furthermore, it is shown that once the ceramic membrane is blocked, it may prove difficult to recover in-situ
Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system
© 2017 Ieropoulos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43-0.04 and 4.21-0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems
Regeneration of the power performance of cathodes affected by biofouling
© 2016 The Authors. Air cathode microbial fuel cells (MFCs) were used in a cascade-system, to treat neat human urine as the fuel. Their long-term operation caused biodeterioration and biofouling of the cathodes. The cathodes were made from two graphite-painted layers, separated by a current collector. The initial performance of the MFCs was reaching average values of 105.5 ± 32.2 μW and current of 1164.5 ± 120.2 μA. After 3 months of operation the power performance decreased to 9.8 ± 3.5 μW, whilst current decreased to 461.2 ± 137.5 μA. Polarisation studies revealed significant transport losses accompanied by a biofilm formation on the cathodes. The alkaline lysis procedure was established to remove the biomass and chemical compounds adsorbed on the cathode's surface. As a result, the current increased from 378.6 ± 108.3 μA to 503.8 ± 95.6 μA. The additional step of replacing the outer layer of the cathode resulted in a further increase of current to 698.1 ± 130 μA. Similarly, the power performance of the MFCs was recovered to the original level reaching 105.3 ± 16.3 μW, which corresponds to 100% recovery. Monitoring bacterial cell number on the cathode's surface showed that biofilm formed during operation was successfully removed and composed mainly of dead bacterial cells after treatment. To the best of the authors' knowledge, this is the first time that the performance of deteriorating cathodes, has been successfully recovered for MFCs in-situ. Through this easy, fast and inexpensive procedure, designing multilayer cathodes may help enhance the range of operating conditions, if a biofilm forms on their surface
Dynamic evolution of anodic biofilm when maturing under different external resistive loads in microbial fuel cells. Electrochemical perspective
© 2018 The Authors Appropriate inoculation and maturation may be crucial for shortening the startup time and maximising power output of Microbial Fuel Cells (MFCs), whilst ensuring stable operation. In this study we explore the relationship between electrochemical parameters of MFCs matured under different external resistance (Rext) values (50 Ω - 10 kΩ) using non-synthetic fuel (human urine). Maturing the biofilm under the lower selected Rext results in improved power performance and lowest internal resistance (Rint), whereas using higher Rext results in increased ohmic losses and inferior performance. When the optimal load is applied to the MFCs following maturity, dependence of microbial activity on original Rext values does not change, suggesting an irreversible effect on the biofilm, within the timeframe of the reported experiments. Biofilm microarchitecture is affected by Rext and plays an important role in MFC efficiency. Presence of water channels, EPS and precipitated salts is distinctive for higher Rext and open circuit MFCs. Correlation analysis reveals that the biofilm changes most dynamically in the first 5 weeks of operation and that fixed Rext lefts an electrochemical effect on biofilm performance. Therefore, the initial conditions of the biofilm development can affect its long-term structure, properties and activity
- …
