314 research outputs found
Anomalous specific heat in high-density QED and QCD
Long-range quasi-static gauge-boson interactions lead to anomalous
(non-Fermi-liquid) behavior of the specific heat in the low-temperature limit
of an electron or quark gas with a leading term. We obtain
perturbative results beyond the leading log approximation and find that
dynamical screening gives rise to a low-temperature series involving also
anomalous fractional powers . We determine their coefficients in
perturbation theory up to and including order and compare with exact
numerical results obtained in the large- limit of QED and QCD.Comment: REVTEX4, 6 pages, 2 figures; v2: minor improvements, references
added; v3: factor of 2 error in the T^(7/3) coefficient corrected and plots
update
Perturbative QCD at non-zero chemical potential: Comparison with the large-Nf limit and apparent convergence
The perturbative three-loop result for the thermodynamic potential of QCD at
finite temperature and chemical potential as obtained in the framework of
dimensional reduction is compared with the exact result in the limit of large
flavor number. The apparent convergence of the former as well as possibilities
for optimization are investigated. Corresponding optimized results for full QCD
are given for the case of two massless quark flavors.Comment: REVTEX4, 4 pages, 3 color figures. v2: fig. 3 now includes also
lattice data for two-flavor QCD at nonzero chemical potentia
The pressure of deconfined QCD for all temperatures and quark chemical potentials
We present a new method for the evaluation of the perturbative expansion of
the QCD pressure which is valid at all values of the temperature and quark
chemical potentials in the deconfined phase and which we work out up to and
including order g^4 accuracy. Our calculation is manifestly four-dimensional
and purely diagrammatic -- and thus independent of any effective theory
descriptions of high temperature or high density QCD. In various limits, we
recover the known results of dimensional reduction and the HDL and HTL
resummation schemes, as well as the equation of state of zero-temperature quark
matter, thereby verifying their respective validity. To demonstrate the overlap
of the various regimes, we furthermore show how the predictions of dimensional
reduction and HDL resummed perturbation theory agree in the regime
T~\sqrt{g}*mu. At parametrically smaller temperatures T~g*mu, we find that the
dimensional reduction result agrees well with those of the nonstatic
resummations down to the remarkably low value T~0.2 m_D, where m_D is the Debye
mass at T=0. Beyond this, we see that only the latter methods connect smoothly
to the T=0 result of Freedman and McLerran, to which the leading small-T
corrections are given by the so-called non-Fermi-liquid terms, first obtained
through HDL resummations. Finally, we outline the extension of our method to
the next order, where it would include terms for the low-temperature entropy
and specific heats that are unknown at present.Comment: 45 pages, 21 figures; v2: minor corrections and clarifications,
references added; v3: Fig 16 added, version accepted for publication in PR
A nonequilibrium renormalization group approach to turbulent reheating
We use nonequilibrium renormalization group (RG) techniques to analyze the
thermalization process in quantum field theory, and by extension reheating
after inflation. Even if at a high scale the theory is described by a
non-dissipative theory, the RG running induces nontrivial
noise and dissipation. For long wavelength, slowly varying field
configurations, the noise and dissipation are white and ohmic, respectively.
The theory will then tend to thermalize to an effective temperature given by
the fluctuation-dissipation theorem.Comment: 8 pages, 2 figures; to appear in J. Phys. A; more detailed account of
the calculation of the noise and dissipation kernel
The magnetic mass of transverse gluon, the B-meson weak decay vertex and the triality symmetry of octonion
With an assumption that in the Yang-Mills Lagrangian, a left-handed fermion
and a right-handed fermion both expressed as quaternion make an octonion which
possesses the triality symmetry, I calculate the magnetic mass of the
transverse self-dual gluon from three loop diagram, in which a heavy quark pair
is created and two self-dual gluons are interchanged.
The magnetic mass of the transverse gluon depends on the mass of the pair
created quarks, and in the case of charmed quark pair creation, the magnetic
mass becomes approximately equal to at MeV. A possible time-like magnetic gluon mass
from two self-dual gluon exchange is derived, and corrections in the B-meson
weak decay vertices from the two self-dual gluon exchange are also evaluated.Comment: 22 pages, 9 figure
Three-loop HTLpt thermodynamics at finite temperature and chemical potential
In this proceedings we present a state-of-the-art method of calculating
thermodynamic potential at finite temperature and finite chemical potential,
using Hard Thermal Loop perturbation theory (HTLpt) up to
next-to-next-leading-order (NNLO). The resulting thermodynamic potential
enables us to evaluate different thermodynamic quantities including pressure
and various quark number susceptibilities (QNS). Comparison between our
analytic results for those thermodynamic quantities with the available lattice
data shows a good agreement.Comment: 5 pages, 6 figures, conference proceedings of XXI DAE-BRNS HEP
Symposium, IIT Guwahati, December 2014; to appear in 'Springer Proceedings in
Physics Series
Advances in perturbative thermal field theory
The progress of the last decade in perturbative quantum field theory at high
temperature and density made possible by the use of effective field theories
and hard-thermal/dense-loop resummations in ultrarelativistic gauge theories is
reviewed. The relevant methods are discussed in field theoretical models from
simple scalar theories to non-Abelian gauge theories including gravity. In the
simpler models, the aim is to give a pedagogical account of some of the
relevant problems and their resolution, while in the more complicated but also
more interesting models such as quantum chromodynamics, a summary of the
results obtained so far are given together with references to a few most recent
developments and open problems.Comment: 84 pages, 18 figues, review article submitted to Reports on Progress
in Physics; v2, v3: minor additions and corrections, more reference
Perturbative and Nonperturbative Kolmogorov Turbulence in a Gluon Plasma
In numerical simulations of nonabelian plasma instabilities in the hard-loop
approximation, a turbulent spectrum has been observed that is characterized by
a phase-space density of particles with exponent , which is larger than expected from relativistic
scatterings. Using the approach of Zakharov, L'vov and Falkovich, we analyse
possible Kolmogorov coefficients for relativistic -particle
processes, which give at most perturbatively for an energy cascade.
We discuss nonperturbative scenarios which lead to larger values. As an extreme
limit we find the result generically in an inherently nonperturbative
effective field theory situation, which coincides with results obtained by
Berges et al.\ in large- scalar field theory. If we instead assume that
scaling behavior is determined by Schwinger-Dyson resummations such that the
different scaling of bare and dressed vertices matters, we find that
intermediate values are possible. We present one simple scenario which would
single out .Comment: published versio
Thermodynamics of Large-N_f QCD at Finite Chemical Potential
We extend the previously obtained results for the thermodynamic potential of
hot QCD in the limit of large number of fermions to non-vanishing chemical
potential. We give exact results for the thermal pressure in the entire range
of temperature and chemical potential for which the presence of a Landau pole
is negligible numerically. In addition we compute linear and non-linear quark
susceptibilities at zero chemical potential, and the entropy at small
temperatures. We compare with the available perturbative results and determine
their range of applicability. Our numerical accuracy is sufficiently high to
check and verify existing results, including the recent perturbative results by
Vuorinen on quark number susceptibilities and the older results by Freedman and
McLerran on the pressure at zero temperature and high chemical potential. We
also obtain a number of perturbative coefficients at sixth order in the
coupling that have not yet been calculated analytically. In the case of both
non-zero temperature and non-zero chemical potential, we investigate the range
of validity of a scaling behaviour noticed recently in lattice calculations by
Fodor, Katz, and Szabo at moderately large chemical potential and find that it
breaks down rather abruptly at , which points to a
presumably generic obstruction for extrapolating data from small to large
chemical potential. At sufficiently small temperatures , we find
dominating non-Fermi-liquid contributions to the interaction part of the
entropy, which exhibits strong nonlinearity in the temperature and an excess
over the free-theory value.Comment: 18 pages, 7 figures, JHEP style; v2: several updates, rewritten and
extended sect. 3.4 covering now "Entropy at small temperatures and
non-Fermi-liquid behaviour"; v3: additional remarks at the end of sect. 3.4;
v4: minor corrections and additions (version to appear in JHEP
The pressure of hot QCD up to g^6 ln(1/g)
The free energy density, or pressure, of QCD has at high temperatures an
expansion in the coupling constant g, known so far up to order g^5. We compute
here the last contribution which can be determined perturbatively, g^6 ln(1/g),
by summing together results for the 4-loop vacuum energy densities of two
different three-dimensional effective field theories. We also demonstrate that
the inclusion of the new perturbative g^6 ln(1/g) terms, once they are summed
together with the so far unknown perturbative and non-perturbative g^6 terms,
could potentially extend the applicability of the coupling constant series down
to surprisingly low temperatures.Comment: 18 pages. Small clarifications added. To appear in Phys.Rev.
- …
