1,030 research outputs found
Measuring implementation strength: lessons from the evaluation of public health strategies in low- and middle-income settings.
Evaluation of strategies to ensure evidence-based, low-cost interventions reach those in need is critical. One approach is to measure the strength, or intensity, with which packages of interventions are delivered, in order to explore the association between implementation strength and public health gains. A recent systematic review suggested methodological guidance was needed. We described the approaches used in three examples of measures of implementation strength in evaluation. These addressed important public health topics with a substantial disease burden in low-and middle-income countries; they involved large-scale implementation; and featured evaluation designs without comparison areas. Strengths and weaknesses of the approaches were discussed. In the evaluation of Ethiopia's Health Extension Programme, implementation strength scoring for each kebele (ward) was based on aggregated data from interviews with mothers of children aged 12-23 months, reflecting their reports of contact with four elements of the programme. An evaluation of the Avahan HIV prevention programme in India used the cumulative amount of Avahan funding per HIV-infected person spent each year in each district. In these cases, a single measure was developed and the association with hypothesised programme outcomes presented. In the evaluation of the Affordable Medicines Facility-malaria, several implementation strength measures were developed based on the duration of activity of the programme and the level of implementation of supporting interventions. Measuring the strength of programme implementation and assessing its association with outcomes is a promising approach to strengthen pragmatic impact evaluation. Five key aspects of developing an implementation strength measure are to: (a) develop a logic model; (b) identify aspects of implementation to be assessed; (c) design and implement data collection from a range of data sources; (d) decide whether and how to combine data into a single measure; and, (e) plan whether and how to use the measure(s) in outcome analysis
An analysis of non-sentinel node positivity in mastectomy and wide local excision after sentinel node biopsy: when could the axilla be spared?
Continuous Hawking-Page transitions in Einstein-scalar gravity
We investigate continuous Hawking-Page transitions in Einstein's gravity
coupled to a scalar field with an arbitrary potential in the weak gravity
limit. We show that this is only possible in a singular limit where the
black-hole horizon marginally traps a curvature singularity. Depending on the
subleading terms in the potential, a rich variety of continuous phase
transitions arise. Our examples include second and higher order, including the
Berezinskii-Kosterlitz-Thouless type. In the case when the scalar is dilaton,
the condition for a continuous phase transition lead to (asymptotically)
linear-dilaton background. We obtain the scaling laws of thermodynamic
functions, as well as the viscosity coefficients near the transition. In the
limit of weak gravitational interactions, the bulk viscosity asymptotes to a
universal constant, independent of the details of the scalar potential. As a
byproduct of our analysis we obtain a one-parameter family of kink solutions in
arbitrary dimension d that interpolate between AdS near the boundary and
linear-dilaton background in the deep interior. The continuous Hawking-Page
transitions found here serve as holographic models for normal-to superfluid
transitions.Comment: 35 pages + appendice
Holographic fermions in charged Gauss-Bonnet black hole
We study the properties of the Green's functions of the fermions in charged
Gauss-Bonnet black hole. What we want to do is to investigate how the presence
of Gauss-Bonnet coupling constant affects the dispersion relation,
which is a characteristic of Fermi or non-Fermi liquid, as well as what
properties such a system has, for instance, the Particle-hole (a)symmetry. One
important result of this research is that we find for , the behavior of
this system is different from that of the Landau Fermi liquid and so the system
can be candidates for holographic dual of generalized non-Fermi liquids. More
importantly, the behavior of this system increasingly similar to that of the
Landau Fermi liquid when is approaching its lower bound. Also we find
that this system possesses the Particle-hole asymmetry when , another
important characteristic of this system. In addition, we also investigate
briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE
The Weak Gravity Conjecture and the Viscosity Bound with Six-Derivative Corrections
The weak gravity conjecture and the shear viscosity to entropy density bound
place constraints on low energy effective field theories that may help to
distinguish which theories can be UV completed. Recently, there have been
suggestions of a possible correlation between the two constraints. In some
interesting cases, the behavior was precisely such that the conjectures were
mutually exclusive. Motivated by these works, we study the mass to charge and
shear viscosity to entropy density ratios for charged AdS5 black branes, which
are holographically dual to four-dimensional CFTs at finite temperature. We
study a family of four-derivative and six-derivative perturbative corrections
to these backgrounds. We identify the region in parameter space where the two
constraints are satisfied and in particular find that the inclusion of the
next-to-leading perturbative correction introduces wider possibilities for the
satisfaction of both constraints.Comment: 24 pages, 6 figures, v2: published version, refs added, minor
clarificatio
Shear Modes, Criticality and Extremal Black Holes
We consider a (2+1)-dimensional field theory, assumed to be holographically
dual to the extremal Reissner-Nordstrom AdS(4) black hole background, and
calculate the retarded correlators of charge (vector) current and
energy-momentum (tensor) operators at finite momentum and frequency. We show
that, similar to what was observed previously for the correlators of scalar and
spinor operators, these correlators exhibit emergent scaling behavior at low
frequency. We numerically compute the electromagnetic and gravitational
quasinormal frequencies (in the shear channel) of the extremal
Reissner-Nordstrom AdS(4) black hole corresponding to the spectrum of poles in
the retarded correlators. The picture that emerges is quite simple: there is a
branch cut along the negative imaginary frequency axis, and a series of
isolated poles corresponding to damped excitations. All of these poles are
always in the lower half complex frequency plane, indicating stability. We show
that this analytic structure can be understood as the proper limit of finite
temperature results as T is taken to zero holding the chemical potential fixed.Comment: 28 pages, 7 figures, added reference
Viscosity Bound and Causality in Superfluid Plasma
It was argued by Brigante et.al that the lower bound on the ratio of the
shear viscosity to the entropy density in strongly coupled plasma is translated
into microcausality violation in the dual gravitational description. Since
transport properties of the system characterize its infrared dynamics, while
the causality of the theory is determined by its ultraviolet behavior, the
viscosity bound/microcausality link should not be applicable to theories that
undergo low temperature phase transitions. We present an explicit model of
AdS/CFT correspondence that confirms this fact.Comment: 27 pages, 5 figures. References added, typos fixe
Black Holes in Quasi-topological Gravity
We construct a new gravitational action which includes cubic curvature
interactions and which provides a useful toy model for the holographic study of
a three parameter family of four- and higher-dimensional CFT's. We also
investigate the black hole solutions of this new gravity theory. Further we
examine the equations of motion of quasi-topological gravity. While the full
equations in a general background are fourth-order in derivatives, we show that
the linearized equations describing gravitons propagating in the AdS vacua
match precisely the second-order equations of Einstein gravity.Comment: 33 pages, 4 figures; two references adde
Transport coefficients, membrane couplings and universality at extremality
We present an efficient method for computing the zero frequency limit of
transport coefficients in strongly coupled field theories described
holographically by higher derivative gravity theories. Hydrodynamic parameters
such as shear viscosity and conductivity can be obtained by computing residues
of poles of the off-shell lagrangian density. We clarify in which sense these
coefficients can be thought of as effective couplings at the horizon, and
present analytic, Wald-like formulae for the shear viscosity and conductivity
in a large class of general higher derivative lagrangians. We show how to apply
our methods to systems at zero temperature but finite chemical potential. Our
results imply that such theories satisfy universally in the
Einstein-Maxwell sector. Likewise, the zero frequency limit of the real part of
the conductivity for such systems is shown to be universally zero, and we
conjecture that higher derivative corrections in this sector do not modify this
result to all orders in perturbation theory.Comment: 29 pages, v2: Small text changes for clarity, typos correcte
Moduli and electromagnetic black brane holography
We investigate the thermodynamic and hydrodynamic properties of 4-dimensional
gauge theories with finite electric charge density in the presence of a
constant magnetic field. Their gravity duals are planar magnetically and
electrically charged AdS black holes in theories that contain a gauge
Chern-Simons term. We present a careful analysis of the near horizon geometry
of these black branes at finite and zero temperature for the case of a scalar
field non-minimally coupled to the electromagnetic field. With the knowledge of
the near horizon data, we obtain analytic expressions for the shear viscosity
coefficient and entropy density, and also study the effect of a generic set of
four derivative interactions on their ratio. We also comment on the attractor
flows of the extremal solutions.Comment: 39 pages, no figures; v2: minor changes, refs. added; v3: typo fixed;
v4: a proof for decoupling of the viscosity mode added in appendix, matches
the published versio
- …
