28 research outputs found

    Frontotemporal Dementia, Manifested as Schizophrenia, with Decreased Heterochromatin on Chromosome 1

    Get PDF
    Introduction. Frontotemporal dementia is a disorder of complex etiology, with genetic components contributing to the disease. The aim of this report is to describe a young patient suffering from frontotemporal dementia, misdiagnosed as schizophrenia, related to a genetic defect on chromosome 1. Case Presentation. A 29-year-old female patient, previously diagnosed as having schizophrenia, was hospitalized with severe behavioural disturbances. She demonstrated severe sexual disinhibition, hyperphagia, lack of motivation, apathy, psychotic symptoms, suicidal thoughts, and cognitive deterioration. Focal atrophy of frontal and anterior temporal structures bilaterally was found on brain MRI, as well as bifrontal hypo perfusion of the brain on SPECT scan. The diagnosis of frontotemporal dementia was made clinically, according to Lund and Manchester groups and Neary diagnostic criteria. Chromosomal analysis was conducted and revealed decrease in length of heterochromatin on the long arm of chromosome 1 (46, XX, 1qh-). Parental karyotypes were normal. Discussion. Frontotemporal dementia, and particularly early-onset cases, can be often misdiagnosed as schizophrenia, with negative impact on case management. Genetic testing could be an aid to the correct diagnosis, which is crucial for optimal patient care

    Mechanisms of Individual and Simultaneous Adsorption of Antibiotics and Dyes onto Halloysite Nanoclay and Regeneration of Saturated Adsorbent via Cold Plasma Bubbling

    No full text
    Halloysite nanoclay (HNC) was examined as an adsorbent for the individual and simultaneous removal of antibiotic enrofloxacin (ENRO) and methylene blue (MB) from aqueous solutions, alongside its regeneration via cold atmospheric plasma (CAP) bubbling. Initially, batch kinetics and isotherm studies were carried out, while the effect of several parameters was evaluated. Both ENRO and MB adsorption onto HNC was better described by Langmuir model, with its maximum adsorption capacity being 34.80 and 27.66 mg/g, respectively. A Pseudo-second order model fitted the experimental data satisfactorily, suggesting chemisorption (through electrostatic interactions) as the prevailing adsorption mechanism, whereas adsorption was also controlled by film diffusion. In the binary system, the presence of MB seemed to act antagonistically to the adsorption of ENRO. The saturated adsorbent was regenerated inside a CAP microbubble reactor and its adsorption capacity was re-tested by applying new adsorption cycles. CAP bubbling was able to efficiently regenerate saturated HNC with low energy requirements (16.67 Wh/g-adsorbent) in contrast to Fenton oxidation. Most importantly, the enhanced adsorption capacity of the CAP-regenerated HNC (compared to raw HNC), when applied in new adsorption cycles, indicated its activation during the regeneration process. The present study provides a green, sustainable and highly effective alternative for water remediation where pharmaceutical and dyes co-exist.</jats:p

    Mechanisms of Individual and Simultaneous Adsorption of Antibiotics and Dyes onto Halloysite Nanoclay and Regeneration of Saturated Adsorbent via Cold Plasma Bubbling

    No full text
    Halloysite nanoclay (HNC) was examined as an adsorbent for the individual and simultaneous removal of antibiotic enrofloxacin (ENRO) and methylene blue (MB) from aqueous solutions, alongside its regeneration via cold atmospheric plasma (CAP) bubbling. Initially, batch kinetics and isotherm studies were carried out, while the effect of several parameters was evaluated. Both ENRO and MB adsorption onto HNC was better described by Langmuir model, with its maximum adsorption capacity being 34.80 and 27.66 mg/g, respectively. A Pseudo-second order model fitted the experimental data satisfactorily, suggesting chemisorption (through electrostatic interactions) as the prevailing adsorption mechanism, whereas adsorption was also controlled by film diffusion. In the binary system, the presence of MB seemed to act antagonistically to the adsorption of ENRO. The saturated adsorbent was regenerated inside a CAP microbubble reactor and its adsorption capacity was re-tested by applying new adsorption cycles. CAP bubbling was able to efficiently regenerate saturated HNC with low energy requirements (16.67 Wh/g-adsorbent) in contrast to Fenton oxidation. Most importantly, the enhanced adsorption capacity of the CAP-regenerated HNC (compared to raw HNC), when applied in new adsorption cycles, indicated its activation during the regeneration process. The present study provides a green, sustainable and highly effective alternative for water remediation where pharmaceutical and dyes co-exist

    Development of Hybrid Systems by Integrating an Adsorption Process with Natural Zeolite and/or Palygorskite into the Electrocoagulation Treatment of Sanitary Landfill Leachate

    No full text
    The effectiveness of a hybrid approach comprising electrocoagulation (EC) and adsorption (AD) (using natural zeolite and/or palygorskite) processes to treat raw sanitary landfill leachate (SLL) was investigated in terms of color, dissolved chemical oxygen demand (d-COD), nitrate nitrogen (NO3&minus;-N) and ammonium nitrogen (NH4+-N) removal. Optimal EC conditions were found with a current density of 30 mA cm&minus;2, Fe electrode material and pH 8. Implementation of the AD process using zeolite (ADzeo) as pre- or post-treatment for EC significantly increased the NH4+-N removal efficiency. The ADzeo-EC sequential treatment showed considerably higher color removal compared to the EC-ADzeo sequential treatment and was therefore determined to be the optimal sequential treatment. Integration of the AD process using palygorskite (ADpal) into the first or middle stage of the ADzeo-EC treatment system enhanced the overall NO3&minus;-N removal efficiency. The hybrid ADzeo-ADpal-EC treatment system exhibited the highest simultaneous removal efficiencies of color, d-COD, NO3&minus;-N and NH4+-N, corresponding to 95.06 &plusmn; 0.19%, 48.89 &plusmn; 0.89%, 68.38 &plusmn; 0.93% and 78.25 &plusmn; 0.61%, respectively. The results of this study indicate that the ADzeo-ADpal-EC hybrid system is a promising and efficient approach for treating raw landfill leachate

    Advanced Collagen-Based Composites as Fertilizers Obtained by Recycling Lime Pelts Waste Resulted during Leather Manufacture

    No full text
    Recent trends in ecological agriculture practices are focused on finding optimal solutions for reuse and recycling of pelt waste from tannery industry. In this context, new collagen-based hydrogels with NPK nutrients encapsulated have been functionalized with synthetic and natural additives, including starch and dolomite, to be used as composite fertilizers. Possible interaction mechanisms are presented in case of each synthetic or natural additive, ranging from strong linkages as a result of esterification reactions until hydrogen bonds and ionic valences. Such interactions are responsible for nutrient release towards soil and plants. These fertilizers have been adequately characterized for their physical chemical and biochemical properties, including nutrient content, and tested on three Greek poor soils and one Romanian normal soil samples. A series of agrochemical tests have been developed by evaluation of uptake and leaching of nutrients on mixtures of sand and soils. It was observed that the clay soil exhibits a higher adsorption capacity than the loam soil for most of nutrients leached from the composite fertilizers tested, with this being correlated with a slower control release towards cultivated plants, thus assuring efficiency of these collagen-based composite fertilizers. The most significant effect was obtained in the case of collagen-based fertilizer functionalized with starch
    corecore