43 research outputs found

    RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription

    Get PDF
    Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1–DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury

    Mouse Retinal Whole Mounts and Quantification of Vasculature Protocol

    No full text

    Fibromodulin Ablation Exacerbates the Severity of Acute DSS Colitis

    Full text link
    AbstractEpidemiological studies have associated pigment production with protection against certain human diseases. In contrast to African Americans, European descendants are more likely to suffer from angiogenesis-dependent and inflammatory diseases, such as wet age-related macular degeneration (ARMD) and ulcerative colitis (UC), respectively. In this study, albino mice that produced high levels of fibromodulin (FMOD) developed less severe acute colitis compared with mice lacking in FMOD as assessed by clinical symptoms and histopathological changes. In a mouse model of dextran sodium sulfate (DSS)-induced acute colitis, FMOD depletion affected the expression and localization of tight junction proteins, contributing to the destruction of the epithelial barrier. Furthermore, this study revealed a stronger inflammatory response after DSS treatment in the absence of FMOD, where FMOD depletion led to an increase in activated T cells, plasmacytoid dendritic cells (pDCs), and type I IFN production. These findings point to FMOD as a potential biomarker of disease severity in UC among light-skinned individuals of European descent.</jats:p

    Melanogenic Activity Facilitates Dendritic Cell Maturation via FMOD

    Full text link
    ABSTRACTAccording to epidemiological research, autoimmune diseases are more prevalent among African Americans, therefore we hypothesized that pigment production in the microenvironment contribute to local immune regulation. Here, in anin vitrosetting we examined the role for pigment production by murine epidermal melanocytes in immune and inflammatory responses via DC activation. Our results revealed that dark pigmented melanocytes increase the production of IL-3 and the pro-inflammatory cytokines IL-6 and TNF-a, and consequently they induce pDC maturation. Further, we found that low pigment associated FMOD interferes with cytokine secretion and subsequent pDC maturation. To the best of our knowledge, this is the first study to assess the effect of baseline pigmentation on epidermal melanocyte cytokine profile, and its impact on DCs.</jats:p

    Melanocytes determine angiogenesis gene expression across human tissues

    No full text
    Several angiogenesis-dependent diseases, including age-related macular degeneration and infantile hemangioma, display differential prevalence among Black, as compared to White individuals. Although socioeconomic status and genetic architecture have been suggested as explaining these differences, we have recently shown that pigment productionper semight be involved. For example, we have shown that the extracellular protein fibromodulin is a pro-angiogenic factor highly secreted by melanocytes in White but not Black individuals. Still, additional pigment-dependent angiogenic factors and their molecular mechanisms remain to be identified. Understanding the contribution of pigmentation to angiogenesis in health and disease is essential for precision medicine of angiogenesis-dependent diseases with racial disparity. Toward that goal, we compared the transcriptomes of Black and White individuals in three tissues with angiogenic activity, namely artery, whole blood, and skin. We identified several differentially expressed angiogenesis pathways, including artery morphogenesis, regulation of endothelial cell chemotaxis, and cellular response to vascular endothelial growth factor stimulus. We then demonstrated that the expression of key genes in these pathways is directly modulated by the degree of pigmentation. We further identified the precise pigment production pathway controlling the expression of these genes, namely melanocortin 1 receptor (MC1R) signaling. These results demonstrate pigment-mediated regulation of angiogenesis-related pathways and their driver genes across human tissues.</jats:p

    Melanocytes determine angiogenesis gene expression across human tissues

    Full text link
    AbstractSeveral angiogenesis-dependent diseases, including age-related macular degeneration and infantile hemangioma, display differential prevalence among Black, as compared to White individuals. Although socioeconomic status and genetic architecture have been suggested as explaining these differences, we have recently shown that pigment productionper semight be involved. For example, we have shown that the extracellular protein fibromodulin is a pro-angiogenic factor highly secreted by melanocytes in White but not Black individuals. Still, additional pigment-dependent angiogenic factors and their molecular mechanisms remain to be identified. Understanding the contribution of pigmentation to angiogenesis in health and disease is essential for precision medicine of angiogenesis-dependent diseases with racial disparity. Toward that goal, we compared the transcriptomes of Black and White individuals in three tissues with angiogenic activity, namely artery, whole blood, and skin. We identified several differentially expressed angiogenesis pathways, including artery morphogenesis, regulation of endothelial cell chemotaxis, and cellular response to vascular endothelial growth factor stimulus. We then demonstrated that the expression of key genes in these pathways is directly modulated by the degree of pigmentation. We further identified the precise pigment production pathway controlling the expression of these genes, namely melanocortin 1 receptor (MC1R) signaling. These results demonstrate pigment-mediated regulation of angiogenesis-related pathways and their driver genes across human tissues.</jats:p

    Melanocyte pigmentation inversely correlates with MCP‐1 production and angiogenesis‐inducing potential

    Full text link
    The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases.—Adini, I., Adini, A., Bazinet, L., Watnick, R. S., Bielenberg, D. R., and D’Amato, R. J. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential
    corecore