808 research outputs found

    Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions

    Get PDF
    Path Integral Monte Carlo simulations have been performed for U(1) lattice gauge theory in (2+1) dimensions on anisotropic lattices. We extractthe static quark potential, the string tension and the low-lying "glueball" spectrum.The Euclidean string tension and mass gap decrease exponentially at weakcoupling in excellent agreement with the predictions of Polyakov and G{\" o}pfert and Mack, but their magnitudes are five times bigger than predicted. Extrapolations are made to the extreme anisotropic or Hamiltonian limit, and comparisons are made with previous estimates obtained in the Hamiltonian formulation.Comment: 12 pages, 16 figure

    The Coupled Cluster Method in Hamiltonian Lattice Field Theory: SU(2) Glueballs

    Get PDF
    The glueball spectrum within the Hamiltonian formulation of lattice gauge theory (without fermions) is calculated for the gauge group SU(2) and for two spatial dimensions. The Hilbert space of gauge-invariant functions of the gauge field is generated by its parallel-transporters on closed paths along the links of the spatial lattice. The coupled cluster method is used to determine the spectrum of the Kogut-Susskind Hamiltonian in a truncated basis. The quality of the description is studied by computing results from various truncations, lattice regularisations and with an improved Hamiltonian. We find consistency for the mass ratio predictions within a scaling region where we obtain good agreement with standard lattice Monte Carlo results.Comment: 13 pages, 7 figure

    Hamiltonian Study of Improved U(1U(1 Lattice Gauge Theory in Three Dimensions

    Full text link
    A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25% for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behaviour is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio MS/MAM_{S}/M_{A} approaches exactly 2, as expected in a theory of free, massive bosons.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Density Matrix Renormalisation Group Approach to the Massive Schwinger Model

    Get PDF
    The massive Schwinger model is studied, using a density matrix renormalisation group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Coleman's picture of `half-asymptotic' particles at background field theta = pi is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.Comment: 38 pages, 18 figures, submitted to PR

    Sequential approach to joint flow-seismic inversion for improved characterization of fractured media

    Get PDF
    Seismic interpretation of subsurface structures is traditionally performed without any account of flow behavior. Here we present a methodology for characterizing fractured geologic reservoirs by integrating flow and seismic data. The key element of the proposed approach is the identification—within the inversion—of the intimate relation between fracture compliance and fracture transmissivity, which determine the acoustic and flow responses of a fractured reservoir, respectively. Owing to the strong (but highly uncertain) dependence of fracture transmissivity on fracture compliance, the modeled flow response in a fractured reservoir is highly sensitive to the geophysical interpretation. By means of synthetic models, we show that by incorporating flow data (well pressures and tracer breakthrough curves) into the inversion workflow, we can simultaneously reduce the error in the seismic interpretation and improve predictions of the reservoir flow dynamics. While the inversion results are robust with respect to noise in the data for this synthetic example, the applicability of the methodology remains to be tested for more complex synthetic models and field cases.Eni-MIT Energy Initiative Founding Member ProgramKorea (South). Ministry of Land, Transportation and Maritime Affairs (15AWMP-B066761-03

    Using a Computer to Print a Dissertation

    Get PDF
    published or submitted for publicatio

    Expectancy and Treatment Interactions: A Dissociation between Acupuncture Analgesia and Expectancy Evoked Placebo Analgesia

    Get PDF
    Recent advances in placebo research have demonstrated the mind's power to alter physiology. In this study, we combined an expectancy manipulation model with both verum and sham acupuncture treatments to address: 1) how and to what extent treatment and expectancy effects — including both subjective pain intensity levels (pain sensory ratings) and objective physiological activations (fMRI) — interact; and 2) if the underlying mechanism of expectancy remains the same whether placebo treatment is given alone or in conjunction with active treatment. The results indicate that although verum acupuncture + high expectation and sham acupuncture + high expectation induced subjective reports of analgesia of equal magnitude, fMRI analysis showed that verum acupuncture produced greater fMRI signal decrease in pain related brain regions during application of calibrated heat pain stimuli on the right arm. We believe our study provides brain imaging evidence for the existence of different mechanisms underlying acupuncture analgesia and expectancy evoked placebo analgesia. Our results also suggest that the brain network involved in expectancy may vary under different treatment situations (verum and sham acupuncture treatment).National Center for Complementary and Alternative Medicine (U.S.) (PO1-AT002048)National Center for Complementary and Alternative Medicine (U.S.) (R21AT00949

    LUWA Dataset: Learning Lithic Use-Wear Analysis on Microscopic Images

    Full text link
    Lithic Use-Wear Analysis (LUWA) using microscopic images is an underexplored vision-for-science research area. It seeks to distinguish the worked material, which is critical for understanding archaeological artifacts, material interactions, tool functionalities, and dental records. However, this challenging task goes beyond the well-studied image classification problem for common objects. It is affected by many confounders owing to the complex wear mechanism and microscopic imaging, which makes it difficult even for human experts to identify the worked material successfully. In this paper, we investigate the following three questions on this unique vision task for the first time:(i) How well can state-of-the-art pre-trained models (like DINOv2) generalize to the rarely seen domain? (ii) How can few-shot learning be exploited for scarce microscopic images? (iii) How do the ambiguous magnification and sensing modality influence the classification accuracy? To study these, we collaborated with archaeologists and built the first open-source and the largest LUWA dataset containing 23,130 microscopic images with different magnifications and sensing modalities. Extensive experiments show that existing pre-trained models notably outperform human experts but still leave a large gap for improvements. Most importantly, the LUWA dataset provides an underexplored opportunity for vision and learning communities and complements existing image classification problems on common objects.Comment: CVP

    Measurements of the pp → ZZ production cross section and the Z → 4ℓ branching fraction, and constraints on anomalous triple gauge couplings at √s = 13 TeV

    Get PDF
    Four-lepton production in proton-proton collisions, pp -> (Z/gamma*)(Z/gamma*) -> 4l, where l = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb(-1). The ZZ production cross section, sigma(pp -> ZZ) = 17.2 +/- 0.5 (stat) +/- 0.7 (syst) +/- 0.4 (theo) +/- 0.4 (lumi) pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 4l) = 4.83(-0.22)(+0.23) (stat)(-0.29)(+0.32) (syst) +/- 0.08 (theo) +/- 0.12(lumi) x 10(-6) for events with a four-lepton invariant mass in the range 80 4GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ. couplings at 95% confidence level: -0.0012 < f(4)(Z) < 0.0010, -0.0010 < f(5)(Z) < 0.0013, -0.0012 < f(4)(gamma) < 0.0013, -0.0012 < f(5)(gamma) < 0.0013
    corecore