13 research outputs found

    SNP-SNP interactions in breast cancer susceptibility

    Get PDF
    BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. METHODS: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. RESULTS: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. CONCLUSION: The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described. The strategy used here has the potential to identify complex biological links among breast cancer genes and processes. This will provide novel biological information, which will ultimately improve breast cancer risk management

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Intrinsic thermoacoustic instability in hydrogen enriched partially premixed flames

    No full text
    The influence of hydrogen addition on the intrinsic thermoacoustic instability in swirl stabilized partially premixed methane flames is investigated using large eddy simulation (LES) and reduced order modeling (ROM). The LES results compare well with the measurements. Hydrogen addition results in a significant deviation of the fundamental frequency from the cavity acoustic modes. The thermoacoustic behavior is analyzed using an ROM with the classical n- τ model for flame dynamics, where the interaction index n and time delay τ are deduced from the LES results. A parametric sweep of n and τ with ROM reveals a broad variation of the acoustic eigenvalues in the eigenspectrum. The eigenspectrum shows two distinct regions corresponding to the classical acoustic and intrinsic modes. These intrinsic modes are characterized by a distinct change in the sign of axial pressure gradient across the flame. In the hydrogen-enriched cases, the pressure mode shapes obtained from the ROM and LES analyses show this change in the axial pressure gradient across the flame zone. This is due to flame-induced pulsation dominating the near-field acoustics, resulting in the emergence of intrinsic modes. Further, general results obtained using the one-dimensional acoustic model on the influence of geometry on the stability of acoustic and intrinsic modes are discussed.</p

    Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario

    No full text
    Abstract Background There is growing evidence that gene-gene interactions are ubiquitous in determining the susceptibility to common human diseases. The investigation of such gene-gene interactions presents new statistical challenges for studies with relatively small sample sizes as the number of potential interactions in the genome can be large. Breast cancer provides a useful paradigm to study genetically complex diseases because commonly occurring single nucleotide polymorphisms (SNPs) may additively or synergistically disturb the system-wide communication of the cellular processes leading to cancer development. Methods In this study, we systematically studied SNP-SNP interactions among 19 SNPs from 18 key genes involved in major cancer pathways in a sample of 398 breast cancer cases and 372 controls from Ontario. We discuss the methodological issues associated with the detection of SNP-SNP interactions in this dataset by applying and comparing three commonly used methods: the logistic regression model, classification and regression trees (CART), and the multifactor dimensionality reduction (MDR) method. Results Our analyses show evidence for several simple (two-way) and complex (multi-way) SNP-SNP interactions associated with breast cancer. For example, all three methods identified XPD-[Lys751Gln]*IL10-[G(-1082)A] as the most significant two-way interaction. CART and MDR identified the same critical SNPs participating in complex interactions. Our results suggest that the use of multiple statistical approaches (or an integrated approach) rather than a single methodology could be the best strategy to elucidate complex gene interactions that have generally very different patterns. Conclusion The strategy used here has the potential to identify complex biological relationships among breast cancer genes and processes. This will lead to the discovery of novel biological information, which will improve breast cancer risk management.</p

    Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario

    No full text
    Abstract Background There is growing evidence that gene-gene interactions are ubiquitous in determining the susceptibility to common human diseases. The investigation of such gene-gene interactions presents new statistical challenges for studies with relatively small sample sizes as the number of potential interactions in the genome can be large. Breast cancer provides a useful paradigm to study genetically complex diseases because commonly occurring single nucleotide polymorphisms (SNPs) may additively or synergistically disturb the system-wide communication of the cellular processes leading to cancer development. Methods In this study, we systematically studied SNP-SNP interactions among 19 SNPs from 18 key genes involved in major cancer pathways in a sample of 398 breast cancer cases and 372 controls from Ontario. We discuss the methodological issues associated with the detection of SNP-SNP interactions in this dataset by applying and comparing three commonly used methods: the logistic regression model, classification and regression trees (CART), and the multifactor dimensionality reduction (MDR) method. Results Our analyses show evidence for several simple (two-way) and complex (multi-way) SNP-SNP interactions associated with breast cancer. For example, all three methods identified XPD-[Lys751Gln]*IL10-[G(-1082)A] as the most significant two-way interaction. CART and MDR identified the same critical SNPs participating in complex interactions. Our results suggest that the use of multiple statistical approaches (or an integrated approach) rather than a single methodology could be the best strategy to elucidate complex gene interactions that have generally very different patterns. Conclusion The strategy used here has the potential to identify complex biological relationships among breast cancer genes and processes. This will lead to the discovery of novel biological information, which will improve breast cancer risk management

    Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario"</p><p>http://www.biomedcentral.com/1741-7015/5/22</p><p>BMC Medicine 2007;5():22-22.</p><p>Published online 7 Aug 2007</p><p>PMCID:PMC1976420.</p><p></p> The best partition found by CART for the two-locus genotypes. Shaded cells are classified as high-risk and non-shaded cells as low-risk. This corresponds to a ratio of cases versus controls higher or lower than 1, respectively. The four partitions of the two-locus genotypes found by MDR showed two cells with different assignments. In (f), CART can partition the two-locus genotypes in more than two groups, but for the purpose of comparison with MDR, we used the same high-risk/low-risk grouping

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries.

    No full text

    The surgical safety checklist and patient outcomes after surgery: a prospective observational cohort study, systematic review and meta-analysis

    Get PDF
    © 2017 British Journal of Anaesthesia Background: The surgical safety checklist is widely used to improve the quality of perioperative care. However, clinicians continue to debate the clinical effectiveness of this tool. Methods: Prospective analysis of data from the International Surgical Outcomes Study (ISOS), an international observational study of elective in-patient surgery, accompanied by a systematic review and meta-analysis of published literature. The exposure was surgical safety checklist use. The primary outcome was in-hospital mortality and the secondary outcome was postoperative complications. In the ISOS cohort, a multivariable multi-level generalized linear model was used to test associations. To further contextualise these findings, we included the results from the ISOS cohort in a meta-analysis. Results are reported as odds ratios (OR) with 95% confidence intervals. Results: We included 44 814 patients from 497 hospitals in 27 countries in the ISOS analysis. There were 40 245 (89.8%) patients exposed to the checklist, whilst 7508 (16.8%) sustained ≥1 postoperative complications and 207 (0.5%) died before hospital discharge. Checklist exposure was associated with reduced mortality [odds ratio (OR) 0.49 (0.32–0.77); P\u3c0.01], but no difference in complication rates [OR 1.02 (0.88–1.19); P=0.75]. In a systematic review, we screened 3732 records and identified 11 eligible studies of 453 292 patients including the ISOS cohort. Checklist exposure was associated with both reduced postoperative mortality [OR 0.75 (0.62–0.92); P\u3c0.01; I2=87%] and reduced complication rates [OR 0.73 (0.61–0.88); P\u3c0.01; I2=89%). Conclusions: Patients exposed to a surgical safety checklist experience better postoperative outcomes, but this could simply reflect wider quality of care in hospitals where checklist use is routine
    corecore