39 research outputs found
The Antidiabetic Drug Ciglitazone Induces High Grade Bladder Cancer Cells Apoptosis through the Up-Regulation of TRAIL
International audienceBACKGROUND: Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ). Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Using RT4 (derived from a well differentiated grade I papillary tumor) and T24 (derived from an undifferentiated grade III carcinoma) bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1) and p27(Kip1) in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism. CONCLUSIONS/SIGNIFICANCE: Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers
Implication de TRAIL dans l'induction de l'apoptose par les thiazolidinediones, agents antidiabétiques, ligands de PPARy (étude dans deux modèles de carcinogenèse épithéliale)
BESANCON-BU Médecine pharmacie (250562102) / SudocSudocFranceF
Apoptotic effect of the selective PPARβ/δ agonist GW501516 in invasive bladder cancer cells
Insights on distinct pathways of thiazolidinediones (PPARgamma ligand)-promoted apoptosis in TRAIL-sensitive or -resistant malignant urothelial cells.
International audienceThiazolidinediones, including rosiglitazone and troglitazone, are insulin-sensitizing drugs and high-affinity ligands for the peroxisome proliferator-activated receptor gamma (PPARgamma). Apart from their antidiabetic activity, these molecules possess antitumor properties. We investigated their potential apoptotic effects on RT4 (derived from a well-differentiated Grade I papillary tumor) and T24 (derived from an undifferentiated Grade III carcinoma) bladder cancer cells. Rosiglitazone induced G2/M or G0/G1 phase cell cycle arrest in RT4 and T24 cells, respectively. Only troglitazone triggered apoptosis via extrinsic and intrinsic pathways in both cell lines. Interestingly, rosiglitazone amplified TRAIL-induced apoptosis in TRAIL-sensitive RT4 cells or let TRAIL-resistant T24 cells to respond to TRAIL. Thiazolidinediones acted through PPARgamma activation-independent mechanisms. The underlying mechanisms involved for the first time in cancer cells the upregulation of soluble and/or membrane-bound TRAIL. This was associated with increased cell surface death receptor 5 expression and c-FLIP and survivin downregulation, mediated in part through proteasome-dependent degradation in troglitazone-promoted cell death. Therefore, the combination of rosiglitazone and TRAIL could be clinically relevant as chemopreventive or therapeutic agents for the treatment of TRAIL-resistant high-grade urothelial cancers
The PPARβ agonist L-165041 promotes VEGF mRNA stabilization in HPV18-harboring HeLa cells through a receptor-independent mechanism
Molecular and nanoscale evaluation of N-cadherin expression in invasive bladder cancer cells under control conditions or GW501516 exposure
AbstractN-cadherin is a transmembrane glycoprotein expressed by mesenchymal origin cells and is located at the adherens junctions. It regulates also cell motility and contributes to cell signaling. In previous studies, we identified that its anomalous expression in bladder carcinoma was a tumor progression marker. A pharmacological approach to inhibit N-cadherin expression or to block its function could be relevant to prevent disease progression and metastasis development. The morphological exploration of T24 invasive bladder cancer cells by atomic force microscopy (AFM) revealed a spindle-like shape with fibrous structures. By engaging force spectroscopy with AFM tip functionalized with anti-E or anti-N-cadherin antibodies, results showed that T24 cells expressed only N-cadherin as also demonstrated by Western blotting and confocal microscopy. For the first time, we demonstrated by RTqPCR and Western blotting analyses that the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonist GW501516 significantly decreased N-cadherin expression in T24 cells. Moreover, high non-cytotoxic doses of GW501516 inhibited confluent T24 cell wound healing closure. By using AFM, a more sensitive nanoanalytical method, we showed that the treatment modified the cellular morphology and diminished N-cadherin cell surface coverage through the decreasing of these adhesion molecule-mediated interaction forces. We observed a greater decrease of N-cadherin upon GW501516 exposure with AFM than that detected with molecular biology techniques. AFM was a complementary tool to biochemical techniques to perform measurements on living cells at the nanometer resolution level. Taken together, our data suggest that GW501516 could be an interesting therapeutic strategy to avoid bladder cancer cell spreading through N-cadherin decrease.</jats:p
Molecular and nanoscale evaluation of N‑cadherin expression in invasive bladder cancer cells under control conditions or GW501516 exposure
International audienceN-cadherin is a transmembrane glycoprotein expressed by mesenchymal origin cells and is located at the adherens junctions. It regulates also cell motility and contributes to cell signaling. In previous studies, we identified that its anomalous expression in bladder carcinoma was a tumor progression marker. A pharmacological approach to inhibit N-cadherin expression or to block its function could be relevant to prevent disease progression and metastasis development. The morphological exploration of T24 invasive bladder cancer cells by atomic force microscopy (AFM) revealed a spindle-like shape with fibrous structures. By engaging force spectroscopy with AFM tip functionalized with anti-E or anti-N-cadherin antibodies, results showed that T24 cells expressed only N-cadherin as also demonstrated by Western blotting and confocal microscopy. For the first time, we demonstrated by RTqPCR and Western blotting analyses that the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonist GW501516 significantly decreased N-cadherin expression in T24 cells. Moreover, high non-cytotoxic doses of GW501516 inhibited confluent T24 cell wound healing closure. By using AFM, a more sensitive nanoanalytical method, we showed that the treatment modified the cellular morphology and diminished N-cadherin cell surface coverage through the decreasing of these adhesion molecule-mediated interaction forces. We observed a greater decrease of N-cadherin upon GW501516 exposure with AFM than that detected with molecular biology techniques. AFM was a complementary tool to biochemical techniques to perform measurements on living cells at the nanometer resolution level. Taken together, our data suggest that GW501516 could be an interesting therapeutic strategy to avoid bladder cancer cell spreading through N-cadherin decrease
Down-regulation of A-FABP predicts non-muscle invasive bladder cancer progression: investigation with a long term clinical follow-up
Abstract Background Non-muscle invasive bladder cancers (NMIBC: pTa, pT1) are characterised by a high risk of recurrence and/or progression. Identification of prognostic markers is needed to improve both diagnosis and management of the disease. The aim of this study was to analyse the expression of A-FABP (adipocyte-fatty acid binding protein) and to evaluate its prognostic value in bladder cancer with a long term clinical follow-up. Methods A-FABP expression was investigated by immunohistochemistry in 236 tumours (114 pTa, 61 pT1, 61 pT2–4). Immunostaining was classified as negative (absent or weak immunostaining and moderate or strong staining on ≤10% of cells) or positive (moderate or strong staining on > 10% of cells). Event-free survival (EFS) and overall survival (OS) were determined with a 87.3 months median follow-up in the overall cohort. Recurrence-free survival (RFS) and progression-free survival (PFS) were established in NMIBC. Results Loss of A-FABP was associated with higher mean age, high stage/grade, and the presence of metastatic lymph nodes. It was correlated with shorter median EFS (17.5 vs 62.5 months; p = 0.001) and mean OS (76.7 vs 154.2 months; p = 0.009) and with higher risk of progression in the pTa/pT1 subgroup (HR, 0.36; 95% CI, 0.13–0.96; p = 0.041) and importantly in the pTa tumours (HR, 0.34; 95% CI, 0.10–0.97; p = 0.045). Conclusion These results demonstrated that loss of A-FABP expression following a long follow-up was predictive of pTa and pTa/pT1 progression. Immunohistochemistry on diagnostic biopsy is easy to use and could be of value to help clinicians to propose appropriate treatment for these tumours
GW501516-Mediated Targeting of Tetraspanin 15 Regulates ADAM10-Dependent N-Cadherin Cleavage in Invasive Bladder Cancer Cells
Bladder cancer aggressiveness is correlated with abnormal N-cadherin transmembrane glycoprotein expression. This protein is cleaved by the metalloprotease ADAM10 and the γ-secretase complex releasing a pro-angiogenic N-terminal fragment (NTF) and a proliferation-activating soluble C-terminal fragment (CTF2). Tetraspanin 15 (Tspan15) is identified as an ADAM10-interacting protein to induce selective N-cadherin cleavage. We first demonstrated, in invasive T24 bladder cancer cells, that N-cadherin was cleaved by ADAM10 generating NTF in the extracellular environment and leaving a membrane-anchored CTF1 fragment and that Tspan15 is required for ADAM10 to induce the selective N-cadherin cleavage. Targeting N-cadherin function in cancer is relevant to preventing tumor progression and metastases. For antitumor molecules to inhibit N-cadherin function, they should be complete and not cleaved. We first showed that the GW501516, an agonist of the nuclear receptor PPARβ/δ, decreased Tspan15 and prevented N-cadherin cleavage thus decreasing NTF. Interestingly, the drug did not modify ADAM10 expression, which was important because it could limit side effects since ADAM10 cleaves numerous substrates. By targeting Tspan15 to block ADAM10 activity on N-cadherin, GW501516 could prevent NTF pro-tumoral effects and be a promising molecule to treat bladder cancer. More interestingly, it could optimize the effects of the N-cadherin antagonists those such as ADH-1 that target the N-cadherin ectodomain
