87 research outputs found
Transgenic mice and their impact on kidney research
The kidney is a key organ in the maintenance of ion and fluid homeostasis and specific transport systems localized along the nephron guarantee this function. Due to its large functional heterogeneity, experiments on the whole organ level cannot be easily performed, and thus more refined tools are needed, like for example the development of specific recombination systems to gain knowledge on the physiological role of single proteins implicated in ion transport. This review introduces the transgenic technology developed over the past decades, and then focuses on recent strategies for generating kidney-specific gene targeting, over-expression, and gene ablation in mice, that will help to understand the physiological role of proteins implicated in salt and water balance in the kidne
The epidermal barrier function is dependent on the serine protease CAP1/Prss8
Serine proteases are proteolytic enzymes that are involved in the regulation of various physiological processes. We generated mice lacking the membrane-anchored channel-activating serine protease (CAP) 1 (also termed protease serine S1 family member 8 [Prss8] and prostasin) in skin, and these mice died within 60 h after birth. They presented a lower body weight and exhibited severe malformation of the stratum corneum (SC). This aberrant skin development was accompanied by an impaired skin barrier function, as evidenced by dehydration and skin permeability assay and transepidermal water loss measurements leading to rapid, fatal dehydration. Analysis of differentiation markers revealed no major alterations in CAP1/Prss8-deficient skin even though the epidermal deficiency of CAP1/Prss8 expression disturbs SC lipid composition, corneocyte morphogenesis, and the processing of profilaggrin. The examination of tight junction proteins revealed an absence of occludin, which did not prevent the diffusion of subcutaneously injected tracer (∼600 D) toward the skin surface. This study shows that CAP1/Prss8 expression in the epidermis is crucial for the epidermal permeability barrier and is, thereby, indispensable for postnatal survival
Role of TASK2 Potassium Channels Regarding Volume Regulation in Primary Cultures of Mouse Proximal Tubules
Several papers reported the role of TASK2 channels in cell volume regulation and regulatory volume decrease (RVD). To check the possibility that the TASK2 channel modulates the RVD process in kidney, we performed primary cultures of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) from wild-type and TASK2 knockout (KO) mice. In KO mice, the TASK2 coding sequence was in part replaced by the lac-Z gene. This allows for the precise localization of TASK2 in kidney sections using β-galactosidase staining. TASK2 was only localized in PCT cells. K+ currents were analyzed by the whole-cell clamp technique with 125 mM K-gluconate in the pipette and 140 mM Na-gluconate in the bath. In PCT cells from wild-type mice, hypotonicity induced swelling-activated K+ currents insensitive to 1 mM tetraethylammonium, 10 nM charybdotoxin, and 10 μM 293B, but blocked by 500 μM quinidine and 10 μM clofilium. These currents were increased in alkaline pH and decreased in acidic pH. In PCT cells from TASK2 KO, swelling-activated K+ currents were completely impaired. In conclusion, the TASK2 channel is expressed in kidney proximal cells and could be the swelling-activated K+ channel responsible for the cell volume regulation process during osmolyte absorptions in the proximal tubules
In vivo Cre/loxP mediated recombination in mouse Clara cells.
In small airways, Clara cells are the main epithelial cell type and play an important physiological role in surfactant production, protection against environmental agents, regulation of inflammatory and immune responses in the respiratory system. Thus, Clara cells are involved in lung homeostasis and pathologies like asthma, Chronic Obstructive Pulmonary Diseases (COPD) or cancers. To date, Clara cells implication in these pathological processes remains largely enigmatic. The engineering of a transgenic strain mouse allowing specific gene invalidation in Clara cells may be of interest to improve our knowledge about the genes involved in these diseases. By using the Cre/loxP strategy we report the engineering of a transgenic mouse strain with expression of Cre recombinase under the control of the Clara Cell Secretory Protein (CCSP) promoter. Specific staining and immuno-histochemistry performed after breeding with reporter mice revealed that CCSP drives a functional Cre expression specifically in Clara cells. This mouse strain is a powerful tool for Cre-loxP-mediated conditional recombination in the lung and represents a new tool to study Clara cell physiology
Simultaneous functional expression of swelling and forskolin-activated chloride currents in primary cultures of rabbit distal convoluted tubule
Comparative Effects of Chloride Channel Inhibitors on LRRC8/VRAC-Mediated Chloride Conductance
International audienceVolume-regulated anion channels (VRAC) are chloride channels activated in response to osmotic stress to regulate cellular volume and also participate in other cellular processes, including cell division and cell death. Recently, members of the LRRC8 family have been identified as the main contributors of VRAC conductance. LRRC8/VRAC is permeable to chloride ions but also exhibits significant permeability to various substrates that vary strongly in charge and size. In this study, we explored the intriguing ability of LRRC8/VRAC to transport glutathione (GSH), the major cellular reactive oxygen species (ROS) scavenger, and its involvement in epithelial-to-mesenchymal transition (EMT), a cellular process in which cellular oxidative status is a crucial step. First, in HEK293-WT cells, we showed that a hypotonic condition induced LRRC8/VRAC-dependent GSH conductance (P GSH /P Cl of~0.1) and a marked decrease in intracellular GSH content. GSH currents and GSH intracellular decrease were both inhibited by DCPIB, an inhibitor of LRRC8/VRAC, and were not observed in HEK293-LRRC8A KO cells. Then, we induced EMT by exposing renal proximal tubule epithelial cells to the pleiotropic growth factor TGFβ1, and we measured the contribution of LRRC8/VRAC in this process by measuring (i) EMT marker expression (assessed both at the gene and protein levels), (ii) cell morphology and (iii) the increase in migration ability. Interestingly, pharmacologic targeting of LRRC8/VRAC (DCPIB) or RNA interference-mediated inhibition (LRRC8A siRNA) attenuated the TGFβ1-induced EMT response by controlling GSH and ROS levels. Interestingly, TGFβ1 exposure triggered DCPIB-sensitive chloride conductance. These results suggest that LRRC8/VRAC, due to its native permeability to GSH and thus its ability to modulate ROS levels, plays a critical role in EMT and might contribute to other physiological and pathophysiological processes associated with oxidative stress
Akt Inhibition as Preconditioning Treatment to Protect Kidney Cells against Anoxia
Lesions issued from the ischemia/reperfusion (I/R) stress are a major challenge in human pathophysiology. Of human organs, the kidney is highly sensitive to I/R because of its high oxygen demand and poor regenerative capacity. Previous studies have shown that targeting the hypusination pathway of eIF5A through GC7 greatly improves ischemic tolerance and can be applied successfully to kidney transplants. The protection process correlates with a metabolic shift from oxidative phosphorylation to glycolysis. Because the protein kinase B Akt is involved in ischemic protective mechanisms and glucose metabolism, we looked for a link between the effects of GC7 and Akt in proximal kidney cells exposed to anoxia or the mitotoxic myxothiazol. We found that GC7 treatment resulted in impaired Akt phosphorylation at the Ser473 and Thr308 sites, so the effects of direct Akt inhibition as a preconditioning protocol on ischemic tolerance were investigated. We evidenced that Akt inhibitors provide huge protection for kidney cells against ischemia and myxothiazol. The pro-survival effect of Akt inhibitors, which is reversible, implied a decrease in mitochondrial ROS production but was not related to metabolic changes or an antioxidant defense increase. Therefore, the inhibition of Akt can be considered as a preconditioning treatment against ischemia.</jats:p
A Plasma Pyrophosphate Cutoff Value for Diagnosing Pseudoxanthoma Elasticum
International audiencePseudoxanthoma elasticum (PXE) is a rare inherited systemic disease responsible for a juvenile peripheral arterial calcification disease. The clinical diagnosis of PXE is only based on a complex multi-organ phenotypic score and/or genetical analysis. Reduced plasma inorganic pyrophosphate concentration [PPi]p has been linked to PXE. In this study, we used a novel and accurate method to measure [PPi]p in one of the largest cohorts of PXE patients, and we reported the valuable contribution of a cutoff value to PXE diagnosis. Plasma samples and clinical records from two French reference centers for PXE (PXE Consultation Center, Angers, and FAVA-MULTI South Competent Center, Nice) were assessed. Plasma PPi were measured in 153 PXE and 46 non-PXE patients. The PPi concentrations in the plasma samples were determined by a new method combining enzymatic and ion chromatography approaches. The best match between the sensitivity and specificity (Youden index) for diagnosing PXE was determined by ROC analysis. [PPi]p were lower in PXE patients (0.92 ± 0.30 µmol/L) than in non-PXE patients (1.61 ± 0.33 µmol/L, p < 0.0001), corresponding to a mean reduction of 43 ± 19% (SD). The PPi cutoff value for diagnosing PXE in all patients was 1.2 µmol/L, with a sensitivity of 83.3% and a specificity of 91.1% (AUC = 0.93), without sex differences. In patients aged <50 years (i.e., the age period for PXE diagnosis), the cutoff PPi was 1.2 µmol/L (sensitivity, specificity, and AUC of 93%, 96%, and 0.97, respectively). The [PPi]p shows high accuracy for diagnosing PXE; thus, quantifying plasma PPi represents the first blood assay for diagnosing PXE
Akt Inhibition as Preconditioning Treatment to Protect Kidney Cells against Anoxia
International audienceLesions issued from the ischemia/reperfusion (I/R) stress are a major challenge in human pathophysiology. Of human organs, the kidney is highly sensitive to I/R because of its high oxygen demand and poor regenerative capacity. Previous studies have shown that targeting the hypusination pathway of eIF5A through GC7 greatly improves ischemic tolerance and can be applied successfully to kidney transplants. The protection process correlates with a metabolic shift from oxidative phosphorylation to glycolysis. Because the protein kinase B Akt is involved in ischemic protective mechanisms and glucose metabolism, we looked for a link between the effects of GC7 and Akt in proximal kidney cells exposed to anoxia or the mitotoxic myxothiazol. We found that GC7 treatment resulted in impaired Akt phosphorylation at the Ser473 and Thr308 sites, so the effects of direct Akt inhibition as a preconditioning protocol on ischemic tolerance were investigated. We evidenced that Akt inhibitors provide huge protection for kidney cells against ischemia and myxothiazol. The pro-survival effect of Akt inhibitors, which is reversible, implied a decrease in mitochondrial ROS production but was not related to metabolic changes or an antioxidant defense increase. Therefore, the inhibition of Akt can be considered as a preconditioning treatment against ischemia
- …
