68 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Pregnancy wastage among HIV infected women in a high HIV prevalence district of India
BACKGROUND: Bagalkot district in Karnataka state is one of the highest HIV prevalence districts in India. A large proportion of the girls also marry at early age in the district and negative pregnancy outcomes among the HIV positive women likely to have large pregnancy wastages. Therefore, this study examined the pregnancy wastages and the associated factors among HIV positive women in a high prevalent district in India. METHODS: We used data from a cross-sectional survey conducted recently among randomly selected currently married HIV positive women, 15–29 years of age, in one of the high HIV prevalence districts in India. The study used the experience of reported pregnancy wastage as an outcome variable, and both bi-variate and multivariate logistic regression analyses were carried out to understand the factors associated with the pregnancy wastage among HIV infected women. RESULTS: Overall, 17 % of the respondents reported pregnancy wastage, of which 81 % were due to spontaneous abortions. Respondents who became pregnant since testing HIV positive reported significantly higher level of pregnancy wastage as compared to those were pregnant before they were tested for HIV. (AOR = 1.9; p = 0.00). While a positive association between duration of marriage and pregnancy wastage was noticed (AOR = 7.4; p = 0.01), there was a negative association between number of living children and pregnancy wastage (AOR = 0.24; p = 0.00). Living in a joint family was associated with increased reporting of pregnancy wastage as compared to those living in nuclear families (AOR = 1.7; p = 0.03). CONCLUSIONS: HIV prevention and care programs need to consider the reproductive health needs of HIV infected married women as a priority area since large proportion of these women reported negative pregnancy outcomes. There is also a need to explore ways to raise the age at marriage in order to stop women getting married before the legal age at marriage
Erratum: "Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data" (2019, ApJ, 879, 10)
This is a correction for 2019 ApJ 879 1
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is . We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between and times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
Community mobilization, empowerment and HIV prevention among female sex workers in south India
While community mobilization has been widely endorsed as an important component of HIV prevention among vulnerable populations such as female sex workers (FSWs), there is uncertainty as to the mechanism through which it impacts upon HIV risk. We explored the hypothesis that individual and collective empowerment of FSW is an outcome of community mobilization, and we examined the means through which HIV risk and vulnerability reduction as well as personal and social transformation are achieved
Differences between seven measures of self-reported numbers of clients of female sex workers in southern India: implications for individual- and population-level analysis.
Quantifying sexual activity of sub-populations with high-risk sexual behaviour is important in understanding HIV epidemiology. This study examined inconsistency of seven outcomes measuring self-reported clients per month (CPM) of female sex workers (FSWs) in southern India and implications for individual/population-level analysis. Multivariate negative binomial regression was used to compare key social/environmental factors associated with each outcome. A transmission dynamics model was used to assess the impact of differences between outcomes on population-level FSW/client HIV prevalence. Outcomes based on 'clients per last working day' produced lower estimates than those based on 'clients per typical day'. Although the outcomes were strongly correlated, their averages differed by approximately two-fold (range 39.0-79.1 CPM). The CPM measure chosen did not greatly influence standard epidemiological 'risk factor' analysis. Differences across outcomes influenced HIV prevalence predictions. Due to this uncertainty, we recommend basing population-based estimates on the range of outcomes, particularly when assessing the impact of interventions
- …
