91 research outputs found
INTEND II randomized clinical trial of intraoperative duct endoscopy in pathological nipple discharge.
Background The majority of lesions resulting in pathological nipple discharge are benign. Conventional surgery is undirected and targeting the causative lesion by duct endoscopy may enable more accurate surgery with fewer complications.Methods Patients requiring microdochectomy and/or major duct excision were randomized to duct endoscopy or no duct endoscopy before surgery. Primary endpoints were successful visualization of the pathological lesion in patients randomized to duct endoscopy, and a comparison of the causative pathology between the two groups. The secondary endpoint was to compare the specimen size between groups.Results A total of 68 breasts were studied in 66 patients; there were 31 breasts in the duct endoscopy group and 37 in the no-endoscopy group. Median age was 49 (range 19-81) years. Follow-up was 5·4 (i.q.r. 3·3-8·9) years in the duct endoscopy group and 5·7 (3·1-9·0) years in no-endoscopy group. Duct endoscopy had a sensitivity of 80 (95 per cent c.i. 52 to 96) per cent, specificity of 71 (44 to 90) per cent, positive predictive value of 71 (44 to 90) per cent and negative predictive value of 80 (52 to 96) per cent in identifying any lesion. There was no difference in causative pathology between the groups. Median volume of the surgical resection specimen did not differ between groups.Conclusion Diagnostic duct endoscopy is useful for identifying causative lesions of nipple discharge. Duct endoscopy did not influence the pathological yield of benign or malignant diagnoses nor surgical resection volumes. Registered as INTEND II in CancerHelp UK clinical trials database (https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-study-looking-at-changes-inside-the-breast-ducts-of-women-who-have-nipple-discharge)
Balancing Selection of a Frame-Shift Mutation in the MRC2 Gene Accounts for the Outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle
We herein describe the positional identification of a 2-bp deletion in the open reading frame of the MRC2 receptor causing the recessive Crooked Tail Syndrome in cattle. The resulting frame-shift reveals a premature stop codon that causes nonsense-mediated decay of the mutant messenger RNA, and the virtual absence of functional Endo180 protein in affected animals. Cases exhibit skeletal anomalies thought to result from impaired extracellular matrix remodeling during ossification, and as of yet unexplained muscular symptoms. We demonstrate that carrier status is very significantly associated with desired characteristics in the general population, including enhanced muscular development, and that the resulting heterozygote advantage caused a selective sweep which explains the unexpectedly high frequency (25%) of carriers in the Belgian Blue Cattle Breed
Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids.
Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of real-time diagnosis, coupling metabolic phenotype to mutant PIK3CA genotype. Oncogenic PIK3CA results in an increase in arachidonic acid and a concomitant overproduction of eicosanoids, acting to promote cell proliferation beyond a cell-autonomous manner. Mechanistically, mutant PIK3CA drives a multimodal signaling network involving mTORC2-PKCζ-mediated activation of the calcium-dependent phospholipase A2 (cPLA2). Notably, inhibiting cPLA2 synergizes with fatty acid-free diet to restore immunogenicity and selectively reduce mutant PIK3CA-induced tumorigenicity. Besides highlighting the potential for metabolic phenotyping in stratified medicine, this study reveals an important role for activated PI3K signaling in regulating arachidonic acid metabolism, uncovering a targetable metabolic vulnerability that largely depends on dietary fat restriction. VIDEO ABSTRACT
Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications
<p>Abstract</p> <p><it>Background</it></p> <p>The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation.</p> <p><it>Methods</it></p> <p>In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies.</p> <p><it>Results</it></p> <p>Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR.</p> <p><it>Conclusions</it></p> <p>This study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.</p
CD44 is overexpressed in basal-like breast cancers but is not a driver of 11p13 amplification
Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer.
Despite showing clinical activity in BRAF-mutant melanoma, the MEK inhibitor (MEKi) trametinib has failed to show clinical benefit in KRAS-mutant colorectal cancer. To identify mechanisms of resistance to MEKi, we employed a pharmacogenomic analysis of MEKi-sensitive versus MEKi-resistant colorectal cancer cell lines. Strikingly, interferon- and inflammatory-related gene sets were enriched in cell lines exhibiting intrinsic and acquired resistance to MEK inhibition. The bromodomain inhibitor JQ1 suppressed interferon-stimulated gene (ISG) expression and in combination with MEK inhibitors displayed synergistic effects and induced apoptosis in MEKi-resistant colorectal cancer cell lines. ISG expression was confirmed in patient-derived organoid models, which displayed resistance to trametinib and were resensitized by JQ1 co-treatment. In in vivo models of colorectal cancer, combination treatment significantly suppressed tumor growth. Our findings provide a novel explanation for the limited response to MEK inhibitors in KRAS-mutant colorectal cancer, known for its inflammatory nature. Moreover, the high expression of ISGs was associated with significantly reduced survival of colorectal cancer patients. Excitingly, we have identified novel therapeutic opportunities to overcome intrinsic and acquired resistance to MEK inhibition in colorectal cancer
Directional sensing of a phorbol ester gradient requires CD44 and is regulated by CD44 phosphorylation
Cancer progression is associated with enhanced directional cell migration, both of the tumour cells invading into the stroma and stromal cells infiltrating the tumour site. In cell-based assays to study directional cell migration, phorbol esters are frequently used as a chemotactic agent. However, the molecular mechanism by which these activators of protein kinase C (PKC) result in the establishment of a polarized migratory phenotype is not known. Here we show that CD44 expression is essential for chemotaxis towards a phorbol ester gradient. In an investigation of CD44 phosphorylation kinetics in resting and stimulated cells, Ser316 was identified as a novel site of phosphorylation following activation of PKC. PKC does not phosphorylate Ser316 directly, but rather mediates the activation of downstream Ser316 kinase(s). In transfection studies, a phosphorylation-deficient Ser316 mutant was shown to act in a dominant-negative fashion to impair chemotaxis mediated by endogenous CD44 in response to a phorbol ester gradient. Importantly, this mutation had no effect on random cell motility or the ability of cells to migrate directionally towards a cocktail of chemoattractants. These studies demonstrate that CD44 functions to provide directional cues to migrating cells without affecting the motility apparatus
- …
